from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool #from requests import Request, Session from requests.exceptions import ConnectionError, Timeout, TooManyRedirects import json from typing import Dict, Any, Optional, List from Gradio_UI import GradioUI verbose = True if verbose: print("Running app.py") #################################### TOOLS ############################################### # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def my_custom_tool(arg1:str, arg2:int)-> str: #it's important to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that does nothing yet Args: arg1: the first argument arg2: the second argument """ return "What magic will you build ?" @tool def fetch_active_crypto(currency: str = 'USD', chunk_size: int = 100) -> Optional[List[Dict[str, Any]]]: """A tool that fetches and reverse sorts by market_cap all active crypto in currency. Args: currency: A string representing the currency the value is returned in (default: 'USD'). chunk_size: The number of cryptocurrencies to process in each chunk (default: 100). Returns: Optional[List[Dict[str, Any]]]: A list of dictionaries containing the top cryptocurrencies by market cap, chunked into smaller pieces, or None if an error occurs. """ url = 'https://pro-api.coinmarketcap.com/v1/cryptocurrency/listings/latest' parameters = { 'start': '1', 'limit': '5000', 'convert': currency } headers = { 'Accepts': 'application/json', 'X-CMC_PRO_API_KEY': 'e375c697-e504-464e-b800-2b8cf9c67765', } session = requests.Session() session.headers.update(headers) try: response = session.get(url, params=parameters) response.raise_for_status() # Raise an exception for HTTP errors data = json.loads(response.text) # Extract and sort cryptocurrencies by market cap if 'data' in data: sorted_crypto = sorted(data['data'], key=lambda x: x['quote'][currency]['market_cap'], reverse=True) # Chunk the sorted data into smaller pieces chunks = [sorted_crypto[i:i + chunk_size] for i in range(0, len(sorted_crypto), chunk_size)] # Convert each chunk into a dictionary result = [] for chunk in chunks: chunk_dict = {crypto['name']: crypto['quote'][currency] for crypto in chunk} result.append(chunk_dict) return result else: print("No data found in the response.") return None except (ConnectionError, Timeout, TooManyRedirects, requests.exceptions.HTTPError) as e: print(f"An error occurred: {e}") return None @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() ########################################## MODEL SELECTION ################################################ MODEL_IDS = [ 'Qwen/Qwen2.5-Coder-14B-Instruct', 'Qwen/Qwen2.5-Coder-3B-Instruct', 'Qwen/Qwen2.5-Coder-7B-Instruct', 'Qwen/Qwen2.5-Coder-32B-Instruct', 'Qwen/Qwen2.5-Coder-1.5B-Instruct' #'https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud/', #'https://jc26mwg228mkj8dw.us-east-1.aws.endpoints.huggingface.cloud/', # 'https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' #'meta-llama/Llama-3.2-1B-Instruct', ## Does a poor job of interpreting my questions and matching them to the tools # Add here wherever model is working for you ] def is_model_overloaded(model_url): """Verify if the model is overloaded doing a test call.""" try: response = requests.post(model_url, json={"inputs": "Test"}) if verbose: print(response.status_code) if response.status_code == 503: # 503 Service Unavailable = Overloaded return True if response.status_code == 404: # 404 Client Error: Not Found return True if response.status_code == 424: # 424 Client Error: Failed Dependency for url: return True return False except requests.RequestException: return True # if there are an error is overloaded def get_available_model(): """Select the first model available from the list.""" for model_url in MODEL_IDS: print("trying",model_url) if not is_model_overloaded(model_url): return model_url return MODEL_IDS[0] # if all are failing, use the first model by dfault if verbose: print("Checking available models.") selected_model_id = get_available_model() if verbose: print(f"Selected: {selected_model_id}") model = HfApiModel( max_tokens=1048, temperature=0.5, #model_id='meta-llama/Llama-3.2-1B-Instruct', #model_id='Qwen/Qwen2.5-Coder-32B-Instruct', #model_id = 'Qwen/Qwen2.5-Coder-1.5B-Instruct', model_id = selected_model_id, # model available selected from the list automatically custom_role_conversions=None, ) ################################## AGENT SETUP ################################################ # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer, image_generation_tool, get_current_time_in_timezone, fetch_active_crypto], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()