import os import os.path as osp import sys import tempfile from uuid import uuid4 import gradio as gr import soundfile import torch import torch.nn.functional as F from huggingface_hub import snapshot_download from transformers import AutoTokenizer from src.internvl.eval import load_video from src.moviedubber.infer.utils_infer import ( cfg_strength, chunk_text, nfe_step, sway_sampling_coef, ) from src.moviedubber.infer.video_preprocess import VideoFeatureExtractor from src.moviedubber.infer_with_mmlm_result import get_spk_emb, get_video_duration, load_models, merge_video_audio from src.moviedubber.model.utils import convert_char_to_pinyin sys.path.insert(0, "src/third_party") sys.path.append("src/third_party/BigVGAN") from InternVL.internvl_chat.internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel # type: ignore device = torch.device("cuda" if torch.cuda.is_available() else "cpu") repo_local_path = snapshot_download(repo_id="woak-oa/DeepDubber-V1") mmlm_path = osp.join(repo_local_path, "mmlm") mmlm = InternVLChatModel.from_pretrained( mmlm_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=False, ) mmlm = mmlm.eval().to(device) tokenizer = AutoTokenizer.from_pretrained(mmlm_path, trust_remote_code=True, use_fast=False) generation_config = dict(max_new_tokens=1024, do_sample=False) ema_model, vocoder, ort_session = load_models(repo_local_path, device=device) videofeature_extractor = VideoFeatureExtractor(device=device) out_dir = "./output" if not os.path.exists(out_dir): os.makedirs(out_dir) def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> str: pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) pixel_values = pixel_values.to(torch.bfloat16).to(device) video_prefix = "".join([f"Frame{i + 1}: \n" for i in range(len(num_patches_list))]) question = ( video_prefix + "What is the voice-over category for this video? Options: A. dialogue, B. monologue, C. narration." ) response = mmlm.chat( tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=False, ) try: response = response.split("")[1].split("")[0].strip() except Exception as e: print(f"Error: {e}, response: {response}") response = response.strip()[0] print(f"Starting deepdubber with video_path: {video_path} and subtitle_text: {subtitle_text}") gen_clip = videofeature_extractor.extract_features(video_path) gen_text = subtitle_text v_dur = get_video_duration(video_path) gen_audio_len = int(v_dur * 24000 // 256) gen_clip = gen_clip.unsqueeze(0).to(device=device, dtype=torch.float32).transpose(1, 2) gen_clip = F.interpolate(gen_clip, size=(gen_audio_len,), mode="linear", align_corners=False).transpose(1, 2) if audio_path is not None: spk_emb = get_spk_emb(audio_path, ort_session) spk_emb = torch.tensor(spk_emb).to(device=device, dtype=torch.float32).unsqueeze(0).unsqueeze(0) else: spk_emb = torch.zeros(1, 1, 256).to(device=device, dtype=torch.float32) gen_text_batches = chunk_text(gen_text, max_chars=1024) final_text_list = convert_char_to_pinyin(gen_text_batches) cond = torch.zeros(1, gen_audio_len, 100).to(device) with torch.inference_mode(): generated, _ = ema_model.sample( cond=cond, text=final_text_list, clip=gen_clip, spk_emb=spk_emb, duration=gen_audio_len, steps=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef, no_ref_audio=True, ) generated = generated.to(torch.float32) generated_mel_spec = generated.permute(0, 2, 1) generated_wave = vocoder(generated_mel_spec) generated_wave = generated_wave.squeeze().cpu().numpy() # using a temporary wav file to save the generated audio with tempfile.NamedTemporaryFile(delete=False, suffix=".wav", dir="./output") as temp_wav_file: temp_wav_path = temp_wav_file.name soundfile.write(temp_wav_path, generated_wave, samplerate=24000) video_out_path = os.path.join(out_dir, f"dubbed_video_{uuid4[:6]}.mp4") concated_video = merge_video_audio( video_path, temp_wav_path, video_out_path, 0, soundfile.info(temp_wav_path).duration ) # Ensure the temporary file is deleted after use os.remove(temp_wav_path) print(f"Deepdubber completed successfully, output path: {concated_video}") return response, concated_video def process_video_dubbing( video_path: str, subtitle_text: str, audio_path: str = None, caption_input: str = None ) -> str: try: if not os.path.exists(video_path): raise ValueError("Video file does not exist") if not subtitle_text.strip(): raise ValueError("Subtitle text cannot be empty") if audio_path is None: audio_path = "datasets/CoTMovieDubbing/GT.wav" print(f"Processing video: {video_path}") res, output_path = deepdubber(video_path, subtitle_text, audio_path) return res, output_path except Exception as e: print(f"Error in process_video_dubbing: {e}") return None, None def create_ui(): with gr.Blocks(title="DeepDubber-V1") as app: gr.Markdown("# DeepDubber-V1\nUpload your video file and enter the subtitle you want to dub") with gr.Row(): video_input = gr.Video(label="Upload video") subtitle_input = gr.Textbox( label="Enter the subtitle", placeholder="Enter the subtitle to be dubbed...", lines=5 ) audio_input = gr.Audio(label="Upload speech prompt (Optional)", type="filepath") # caption_input = gr.Textbox(label="Enter the description of Video (Optional)", lines=1) process_btn = gr.Button("Start Dubbing") with gr.Row(): output_response = gr.Textbox(label="Response", placeholder="Response from MMLM", lines=5) output_video = gr.Video(label="Dubbed Video") # add some examples examples = [ [ "datasets/CoTMovieDubbing/demo/v01input.mp4", "it isn't simply a question of creating a robot who can love", "datasets/CoTMovieDubbing/demo/speech_prompt_01.mp3", # "datasets/CoTMovieDubbing/demo/speech_prompt_01.mp3", ], [ "datasets/CoTMovieDubbing/demo/v02input.mp4", "Me, I'd be happy with one who's not... fixed.", "datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3", # "datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3", ], [ "datasets/CoTMovieDubbing/demo/v03input.mp4", "Man, Papi. What am I gonna do?", "datasets/CoTMovieDubbing/demo/speech_prompt_03.mp3", # "datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3", ], ] process_btn.click( fn=process_video_dubbing, inputs=[video_input, subtitle_input, audio_input], outputs=[output_response, output_video], ) # gr.Examples(examples=examples, inputs=[video_input, subtitle_input, audio_input, caption_input]) gr.Examples(examples=examples, inputs=[video_input, subtitle_input, audio_input]) return app if __name__ == "__main__": app = create_ui() app.launch(allowed_paths=["./output", "./datasets"])