File size: 7,785 Bytes
9d9ac6c
64daaa2
3f053af
9d9ac6c
3a55fb8
9d9ac6c
 
 
 
 
d309119
3a55fb8
9d9ac6c
1b58092
9d9ac6c
 
 
 
 
 
 
3a55fb8
9d9ac6c
 
 
1b58092
3f053af
 
1b58092
 
3f053af
1b58092
 
64daaa2
 
1b58092
 
 
 
 
 
 
 
 
 
 
 
9d9ac6c
64daaa2
9d9ac6c
 
 
f552b0e
 
 
 
9d9ac6c
 
1b58092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93fde94
1b58092
 
 
 
9d9ac6c
 
 
 
3a55fb8
 
9d9ac6c
 
 
 
 
3a55fb8
9d9ac6c
 
3a55fb8
9d9ac6c
 
 
 
3a55fb8
 
9d9ac6c
 
3a55fb8
9d9ac6c
 
 
 
 
 
 
3a55fb8
9d9ac6c
 
 
 
 
 
 
 
 
 
f552b0e
9d9ac6c
 
 
3a55fb8
 
 
 
9d9ac6c
 
 
 
 
1b58092
9d9ac6c
 
3a55fb8
 
 
64daaa2
 
 
9d9ac6c
64daaa2
 
9d9ac6c
64daaa2
 
8551eaf
fa9993d
 
64daaa2
9d9ac6c
64daaa2
9d9ac6c
64daaa2
 
9d9ac6c
64daaa2
9d9ac6c
 
 
 
8551eaf
9d9ac6c
 
 
8551eaf
 
 
93fde94
3a55fb8
9d9ac6c
 
 
1b58092
 
 
9d9ac6c
93fde94
 
 
 
 
 
3a55fb8
93fde94
 
 
 
 
3a55fb8
93fde94
 
 
 
 
3a55fb8
93fde94
 
 
9d9ac6c
1b58092
 
 
9d9ac6c
 
3a55fb8
93fde94
 
9d9ac6c
 
 
 
 
abec288
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import os.path as osp
import sys
import tempfile
from uuid import uuid4

import gradio as gr
import soundfile
import torch
import torch.nn.functional as F
from huggingface_hub import snapshot_download
from transformers import AutoTokenizer

from src.internvl.eval import load_video
from src.moviedubber.infer.utils_infer import (
    cfg_strength,
    chunk_text,
    nfe_step,
    sway_sampling_coef,
)
from src.moviedubber.infer.video_preprocess import VideoFeatureExtractor
from src.moviedubber.infer_with_mmlm_result import get_spk_emb, get_video_duration, load_models, merge_video_audio
from src.moviedubber.model.utils import convert_char_to_pinyin


sys.path.insert(0, "src/third_party")
sys.path.append("src/third_party/BigVGAN")

from InternVL.internvl_chat.internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel  # type: ignore


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

repo_local_path = snapshot_download(repo_id="woak-oa/DeepDubber-V1")
mmlm_path = osp.join(repo_local_path, "mmlm")
mmlm = InternVLChatModel.from_pretrained(
    mmlm_path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=False,
)
mmlm = mmlm.eval().to(device)

tokenizer = AutoTokenizer.from_pretrained(mmlm_path, trust_remote_code=True, use_fast=False)

generation_config = dict(max_new_tokens=1024, do_sample=False)


ema_model, vocoder, ort_session = load_models(repo_local_path, device=device)

videofeature_extractor = VideoFeatureExtractor(device=device)

out_dir = "./output"
if not os.path.exists(out_dir):
    os.makedirs(out_dir)


def deepdubber(video_path: str, subtitle_text: str, audio_path: str = None) -> str:
    pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
    pixel_values = pixel_values.to(torch.bfloat16).to(device)
    video_prefix = "".join([f"Frame{i + 1}: <image>\n" for i in range(len(num_patches_list))])
    question = (
        video_prefix
        + "What is the voice-over category for this video? Options: A. dialogue, B. monologue, C. narration."
    )
    response = mmlm.chat(
        tokenizer,
        pixel_values,
        question,
        generation_config,
        num_patches_list=num_patches_list,
        history=None,
        return_history=False,
    )

    try:
        response = response.split("<REASONING>")[1].split("</REASONING>")[0].strip()
    except Exception as e:
        print(f"Error: {e}, response: {response}")
        response = response.strip()[0]

    print(f"Starting deepdubber with video_path: {video_path} and subtitle_text: {subtitle_text}")
    gen_clip = videofeature_extractor.extract_features(video_path)
    gen_text = subtitle_text

    v_dur = get_video_duration(video_path)
    gen_audio_len = int(v_dur * 24000 // 256)

    gen_clip = gen_clip.unsqueeze(0).to(device=device, dtype=torch.float32).transpose(1, 2)
    gen_clip = F.interpolate(gen_clip, size=(gen_audio_len,), mode="linear", align_corners=False).transpose(1, 2)

    if audio_path is not None:
        spk_emb = get_spk_emb(audio_path, ort_session)
        spk_emb = torch.tensor(spk_emb).to(device=device, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
    else:
        spk_emb = torch.zeros(1, 1, 256).to(device=device, dtype=torch.float32)

    gen_text_batches = chunk_text(gen_text, max_chars=1024)
    final_text_list = convert_char_to_pinyin(gen_text_batches)

    cond = torch.zeros(1, gen_audio_len, 100).to(device)

    with torch.inference_mode():
        generated, _ = ema_model.sample(
            cond=cond,
            text=final_text_list,
            clip=gen_clip,
            spk_emb=spk_emb,
            duration=gen_audio_len,
            steps=nfe_step,
            cfg_strength=cfg_strength,
            sway_sampling_coef=sway_sampling_coef,
            no_ref_audio=True,
        )

        generated = generated.to(torch.float32)

        generated_mel_spec = generated.permute(0, 2, 1)
        generated_wave = vocoder(generated_mel_spec)

        generated_wave = generated_wave.squeeze().cpu().numpy()

    # using a temporary wav file to save the generated audio
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav", dir="./output") as temp_wav_file:
        temp_wav_path = temp_wav_file.name
        soundfile.write(temp_wav_path, generated_wave, samplerate=24000)

    video_out_path = os.path.join(out_dir, f"dubbed_video_{uuid4[:6]}.mp4")
    concated_video = merge_video_audio(
        video_path, temp_wav_path, video_out_path, 0, soundfile.info(temp_wav_path).duration
    )

    # Ensure the temporary file is deleted after use
    os.remove(temp_wav_path)

    print(f"Deepdubber completed successfully, output path: {concated_video}")
    return response, concated_video


def process_video_dubbing(
    video_path: str, subtitle_text: str, audio_path: str = None, caption_input: str = None
) -> str:
    try:
        if not os.path.exists(video_path):
            raise ValueError("Video file does not exist")

        if not subtitle_text.strip():
            raise ValueError("Subtitle text cannot be empty")

        if audio_path is None:
            audio_path = "datasets/CoTMovieDubbing/GT.wav"

        print(f"Processing video: {video_path}")

        res, output_path = deepdubber(video_path, subtitle_text, audio_path)

        return res, output_path

    except Exception as e:
        print(f"Error in process_video_dubbing: {e}")

        return None, None


def create_ui():
    with gr.Blocks(title="DeepDubber-V1") as app:
        gr.Markdown("# DeepDubber-V1\nUpload your video file and enter the subtitle you want to dub")

        with gr.Row():
            video_input = gr.Video(label="Upload video")
            subtitle_input = gr.Textbox(
                label="Enter the subtitle", placeholder="Enter the subtitle to be dubbed...", lines=5
            )
            audio_input = gr.Audio(label="Upload speech prompt (Optional)", type="filepath")
            # caption_input = gr.Textbox(label="Enter the description of Video (Optional)", lines=1)

        process_btn = gr.Button("Start Dubbing")

        with gr.Row():
            output_response = gr.Textbox(label="Response", placeholder="Response from MMLM", lines=5)
            output_video = gr.Video(label="Dubbed Video")

        # add some examples
        examples = [
            [
                "datasets/CoTMovieDubbing/demo/v01input.mp4",
                "it isn't simply a question of creating a robot who can love",
                "datasets/CoTMovieDubbing/demo/speech_prompt_01.mp3",
                # "datasets/CoTMovieDubbing/demo/speech_prompt_01.mp3",
            ],
            [
                "datasets/CoTMovieDubbing/demo/v02input.mp4",
                "Me, I'd be happy with one who's not... fixed.",
                "datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3",
                # "datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3",
            ],
            [
                "datasets/CoTMovieDubbing/demo/v03input.mp4",
                "Man, Papi. What am I gonna do?",
                "datasets/CoTMovieDubbing/demo/speech_prompt_03.mp3",
                # "datasets/CoTMovieDubbing/demo/speech_prompt_02.mp3",
            ],
        ]

        process_btn.click(
            fn=process_video_dubbing,
            inputs=[video_input, subtitle_input, audio_input],
            outputs=[output_response, output_video],
        )

        # gr.Examples(examples=examples, inputs=[video_input, subtitle_input, audio_input, caption_input])
        gr.Examples(examples=examples, inputs=[video_input, subtitle_input, audio_input])

    return app


if __name__ == "__main__":
    app = create_ui()
    app.launch(allowed_paths=["./output", "./datasets"])