Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,6 @@ from save_results import save_results_to_repo
|
|
13 |
|
14 |
# Paths
|
15 |
MODEL_PATH = "./distilbert_spam_model"
|
16 |
-
RESULTS_JSON = "ocr_results.json"
|
17 |
|
18 |
# Ensure model exists
|
19 |
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
|
@@ -51,7 +50,7 @@ def ocr_with_easy(img):
|
|
51 |
# OCR Extraction Function
|
52 |
def extract_text(method, img):
|
53 |
if img is None:
|
54 |
-
|
55 |
|
56 |
# Convert PIL Image to OpenCV format
|
57 |
img = np.array(img)
|
@@ -68,13 +67,13 @@ def extract_text(method, img):
|
|
68 |
text_output = text_output.strip()
|
69 |
|
70 |
if len(text_output) == 0:
|
71 |
-
return "No text detected!"
|
72 |
|
73 |
-
return text_output
|
74 |
|
75 |
# Classification Function
|
76 |
def classify_text(text_output):
|
77 |
-
if text_output.strip()
|
78 |
return text_output, "Cannot classify"
|
79 |
|
80 |
# Tokenize text
|
@@ -95,25 +94,20 @@ def classify_text(text_output):
|
|
95 |
return text_output, label
|
96 |
|
97 |
# Gradio Interface
|
98 |
-
image_input = gr.Image()
|
99 |
-
method_input = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR", label="Choose OCR Method")
|
100 |
-
output_text = gr.Textbox(label="Extracted Text", interactive=True)
|
101 |
-
output_label = gr.Textbox(label="Spam Classification", interactive=False)
|
102 |
-
|
103 |
-
# Define UI layout
|
104 |
with gr.Blocks() as demo:
|
105 |
gr.Markdown("## OCR Spam Classifier")
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
with gr.Row():
|
111 |
-
image_input.render()
|
112 |
-
|
113 |
extract_button = gr.Button("Submit")
|
114 |
classify_button = gr.Button("Classify")
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
117 |
classify_button.click(fn=classify_text, inputs=[output_text], outputs=[output_text, output_label])
|
118 |
|
119 |
# Launch App
|
|
|
13 |
|
14 |
# Paths
|
15 |
MODEL_PATH = "./distilbert_spam_model"
|
|
|
16 |
|
17 |
# Ensure model exists
|
18 |
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
|
|
|
50 |
# OCR Extraction Function
|
51 |
def extract_text(method, img):
|
52 |
if img is None:
|
53 |
+
return "Error: Please upload an image!", ""
|
54 |
|
55 |
# Convert PIL Image to OpenCV format
|
56 |
img = np.array(img)
|
|
|
67 |
text_output = text_output.strip()
|
68 |
|
69 |
if len(text_output) == 0:
|
70 |
+
return "No text detected!", ""
|
71 |
|
72 |
+
return text_output, ""
|
73 |
|
74 |
# Classification Function
|
75 |
def classify_text(text_output):
|
76 |
+
if text_output.strip() in ["No text detected!", "Error: Please upload an image!"]:
|
77 |
return text_output, "Cannot classify"
|
78 |
|
79 |
# Tokenize text
|
|
|
94 |
return text_output, label
|
95 |
|
96 |
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
with gr.Blocks() as demo:
|
98 |
gr.Markdown("## OCR Spam Classifier")
|
99 |
+
|
100 |
+
method_input = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR", label="Choose OCR Method")
|
101 |
+
image_input = gr.Image(label="Upload Image")
|
102 |
+
|
|
|
|
|
|
|
103 |
extract_button = gr.Button("Submit")
|
104 |
classify_button = gr.Button("Classify")
|
105 |
+
|
106 |
+
output_text = gr.Textbox(label="Extracted Text", interactive=True)
|
107 |
+
output_label = gr.Textbox(label="Spam Classification", interactive=False)
|
108 |
+
|
109 |
+
# Button Click Bindings
|
110 |
+
extract_button.click(fn=extract_text, inputs=[method_input, image_input], outputs=[output_text, output_label])
|
111 |
classify_button.click(fn=classify_text, inputs=[output_text], outputs=[output_text, output_label])
|
112 |
|
113 |
# Launch App
|