Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,87 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import DistilBertTokenizer,
|
4 |
-
import keras_ocr
|
5 |
import cv2
|
|
|
6 |
import easyocr
|
|
|
7 |
from paddleocr import PaddleOCR
|
8 |
-
import
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
Paddle OCR
|
20 |
-
"""
|
21 |
def ocr_with_paddle(img):
|
22 |
-
finaltext = ''
|
23 |
ocr = PaddleOCR(lang='en', use_angle_cls=True)
|
24 |
result = ocr.ocr(img)
|
25 |
-
|
26 |
-
|
27 |
-
text = result[0][i][1][0]
|
28 |
-
finaltext += ' ' + text
|
29 |
-
return finaltext
|
30 |
|
31 |
-
"""
|
32 |
-
Keras OCR
|
33 |
-
"""
|
34 |
def ocr_with_keras(img):
|
35 |
-
output_text = ''
|
36 |
pipeline = keras_ocr.pipeline.Pipeline()
|
37 |
images = [keras_ocr.tools.read(img)]
|
38 |
predictions = pipeline.recognize(images)
|
39 |
-
|
40 |
-
|
41 |
-
output_text += ' ' + text
|
42 |
-
return output_text
|
43 |
|
44 |
-
"""
|
45 |
-
Easy OCR
|
46 |
-
"""
|
47 |
def ocr_with_easy(img):
|
48 |
reader = easyocr.Reader(['en'])
|
49 |
-
|
50 |
-
return ' '.join(
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
if img is None:
|
57 |
-
raise gr.Error("Please upload an image!")
|
58 |
-
|
59 |
-
# Perform OCR
|
60 |
-
text_output = ''
|
61 |
-
if Method == 'EasyOCR':
|
62 |
-
text_output = ocr_with_easy(img)
|
63 |
-
elif Method == 'KerasOCR':
|
64 |
-
text_output = ocr_with_keras(img)
|
65 |
-
elif Method == 'PaddleOCR':
|
66 |
-
text_output = ocr_with_paddle(img)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
"""
|
81 |
-
|
82 |
-
method = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR")
|
83 |
-
output_text = gr.Textbox(label="Extracted Text")
|
84 |
-
output_label = gr.Label(label="Classification")
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
[
|
89 |
-
|
90 |
-
title="OCR
|
91 |
-
description="Upload an image with text, extract the text using OCR, and classify
|
|
|
92 |
)
|
93 |
|
94 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer, DistilBertConfig
|
|
|
4 |
import cv2
|
5 |
+
import numpy as np
|
6 |
import easyocr
|
7 |
+
import keras_ocr
|
8 |
from paddleocr import PaddleOCR
|
9 |
+
import os
|
10 |
|
11 |
+
# Ensure model config exists
|
12 |
+
MODEL_PATH = "./distilbert_spam_model"
|
13 |
|
14 |
+
if not os.path.exists(os.path.join(MODEL_PATH, "config.json")):
|
15 |
+
print("config.json not found. Generating default configuration...")
|
16 |
+
config = DistilBertConfig.from_pretrained("distilbert-base-uncased", num_labels=2)
|
17 |
+
config.save_pretrained(MODEL_PATH)
|
18 |
+
|
19 |
+
# Load tokenizer and model
|
20 |
+
tokenizer = DistilBertTokenizer.from_pretrained(MODEL_PATH)
|
21 |
+
model = DistilBertForSequenceClassification.from_pretrained(MODEL_PATH)
|
22 |
+
|
23 |
+
# Define Spam Classification Function
|
24 |
+
def classify_text(text):
|
25 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(**inputs)
|
28 |
+
logits = outputs.logits
|
29 |
+
prediction = torch.argmax(logits, dim=-1).item()
|
30 |
+
return "Spam" if prediction == 1 else "Not Spam"
|
31 |
|
32 |
+
# OCR Methods
|
|
|
|
|
33 |
def ocr_with_paddle(img):
|
|
|
34 |
ocr = PaddleOCR(lang='en', use_angle_cls=True)
|
35 |
result = ocr.ocr(img)
|
36 |
+
extracted_text = ' '.join([entry[1][0] for entry in result[0]])
|
37 |
+
return extracted_text
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
39 |
def ocr_with_keras(img):
|
|
|
40 |
pipeline = keras_ocr.pipeline.Pipeline()
|
41 |
images = [keras_ocr.tools.read(img)]
|
42 |
predictions = pipeline.recognize(images)
|
43 |
+
extracted_text = ' '.join([text for text, _ in predictions[0]])
|
44 |
+
return extracted_text
|
|
|
|
|
45 |
|
|
|
|
|
|
|
46 |
def ocr_with_easy(img):
|
47 |
reader = easyocr.Reader(['en'])
|
48 |
+
results = reader.readtext(img, detail=0)
|
49 |
+
return ' '.join(results)
|
50 |
|
51 |
+
# OCR + Spam Detection
|
52 |
+
def process_image(ocr_method, image):
|
53 |
+
if image is None:
|
54 |
+
return "Error: No image uploaded."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
if ocr_method == "PaddleOCR":
|
57 |
+
extracted_text = ocr_with_paddle(image)
|
58 |
+
elif ocr_method == "KerasOCR":
|
59 |
+
extracted_text = ocr_with_keras(image)
|
60 |
+
elif ocr_method == "EasyOCR":
|
61 |
+
extracted_text = ocr_with_easy(image)
|
62 |
+
else:
|
63 |
+
return "Invalid OCR method."
|
64 |
+
|
65 |
+
if not extracted_text.strip():
|
66 |
+
return "No text detected in the image."
|
67 |
|
68 |
+
classification = classify_text(extracted_text)
|
69 |
+
return f"Extracted Text: {extracted_text}\n\nClassification: {classification}"
|
70 |
|
71 |
+
# Gradio UI
|
72 |
+
image_input = gr.Image(type="numpy")
|
73 |
+
ocr_method_input = gr.Radio(["PaddleOCR", "EasyOCR", "KerasOCR"], value="PaddleOCR", label="OCR Method")
|
74 |
+
output_text = gr.Textbox(label="OCR & Classification Result")
|
|
|
|
|
|
|
75 |
|
76 |
+
interface = gr.Interface(
|
77 |
+
fn=process_image,
|
78 |
+
inputs=[ocr_method_input, image_input],
|
79 |
+
outputs=output_text,
|
80 |
+
title="OCR + Spam Detection",
|
81 |
+
description="Upload an image with text, extract the text using OCR, and classify it as Spam or Not Spam using DistilBERT.",
|
82 |
+
theme="compact"
|
83 |
)
|
84 |
|
85 |
+
# Launch app
|
86 |
+
if __name__ == "__main__":
|
87 |
+
interface.launch()
|