Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import json
|
|
|
4 |
import os
|
5 |
import cv2
|
6 |
import numpy as np
|
@@ -9,10 +10,10 @@ import keras_ocr
|
|
9 |
from paddleocr import PaddleOCR
|
10 |
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
11 |
import torch.nn.functional as F
|
|
|
12 |
|
13 |
# Paths
|
14 |
MODEL_PATH = "./distilbert_spam_model"
|
15 |
-
RESULTS_JSON = "results.json"
|
16 |
|
17 |
# Ensure model exists
|
18 |
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
|
@@ -26,10 +27,10 @@ else:
|
|
26 |
model = DistilBertForSequenceClassification.from_pretrained(MODEL_PATH)
|
27 |
tokenizer = DistilBertTokenizer.from_pretrained(MODEL_PATH)
|
28 |
|
29 |
-
# Ensure model is in evaluation mode
|
30 |
model.eval()
|
31 |
|
32 |
-
# OCR Functions
|
33 |
def ocr_with_paddle(img):
|
34 |
ocr = PaddleOCR(lang='en', use_angle_cls=True)
|
35 |
result = ocr.ocr(img)
|
@@ -47,22 +48,6 @@ def ocr_with_easy(img):
|
|
47 |
results = reader.readtext(gray_image, detail=0)
|
48 |
return ' '.join(results)
|
49 |
|
50 |
-
# Save results to JSON
|
51 |
-
def save_to_json(text, label):
|
52 |
-
data = {"text": text, "classification": label}
|
53 |
-
if os.path.exists(RESULTS_JSON):
|
54 |
-
with open(RESULTS_JSON, "r") as file:
|
55 |
-
try:
|
56 |
-
results = json.load(file)
|
57 |
-
except json.JSONDecodeError:
|
58 |
-
results = []
|
59 |
-
else:
|
60 |
-
results = []
|
61 |
-
|
62 |
-
results.append(data)
|
63 |
-
with open(RESULTS_JSON, "w") as file:
|
64 |
-
json.dump(results, file, indent=4)
|
65 |
-
|
66 |
# OCR & Classification Function
|
67 |
def generate_ocr(method, img):
|
68 |
if img is None:
|
@@ -79,6 +64,7 @@ def generate_ocr(method, img):
|
|
79 |
else: # KerasOCR
|
80 |
text_output = ocr_with_keras(img)
|
81 |
|
|
|
82 |
text_output = text_output.strip()
|
83 |
if len(text_output) == 0:
|
84 |
return "No text detected!", "Cannot classify"
|
@@ -89,13 +75,14 @@ def generate_ocr(method, img):
|
|
89 |
# Perform inference
|
90 |
with torch.no_grad():
|
91 |
outputs = model(**inputs)
|
92 |
-
probs = F.softmax(outputs.logits, dim=1)
|
93 |
-
spam_prob = probs[0][1].item()
|
94 |
|
|
|
95 |
label = "Spam" if spam_prob > 0.5 else "Not Spam"
|
96 |
|
97 |
-
# Save results
|
98 |
-
|
99 |
|
100 |
return text_output, label
|
101 |
|
@@ -115,5 +102,5 @@ demo = gr.Interface(
|
|
115 |
)
|
116 |
|
117 |
# Launch App
|
118 |
-
if __name__ == "
|
119 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import json
|
4 |
+
import csv
|
5 |
import os
|
6 |
import cv2
|
7 |
import numpy as np
|
|
|
10 |
from paddleocr import PaddleOCR
|
11 |
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
12 |
import torch.nn.functional as F
|
13 |
+
from save_results import save_results_to_repo # Import the save function
|
14 |
|
15 |
# Paths
|
16 |
MODEL_PATH = "./distilbert_spam_model"
|
|
|
17 |
|
18 |
# Ensure model exists
|
19 |
if not os.path.exists(os.path.join(MODEL_PATH, "pytorch_model.bin")):
|
|
|
27 |
model = DistilBertForSequenceClassification.from_pretrained(MODEL_PATH)
|
28 |
tokenizer = DistilBertTokenizer.from_pretrained(MODEL_PATH)
|
29 |
|
30 |
+
# 🔹 Ensure model is in evaluation mode
|
31 |
model.eval()
|
32 |
|
33 |
+
# OCR Functions (No changes here)
|
34 |
def ocr_with_paddle(img):
|
35 |
ocr = PaddleOCR(lang='en', use_angle_cls=True)
|
36 |
result = ocr.ocr(img)
|
|
|
48 |
results = reader.readtext(gray_image, detail=0)
|
49 |
return ' '.join(results)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# OCR & Classification Function
|
52 |
def generate_ocr(method, img):
|
53 |
if img is None:
|
|
|
64 |
else: # KerasOCR
|
65 |
text_output = ocr_with_keras(img)
|
66 |
|
67 |
+
# Preprocess text properly
|
68 |
text_output = text_output.strip()
|
69 |
if len(text_output) == 0:
|
70 |
return "No text detected!", "Cannot classify"
|
|
|
75 |
# Perform inference
|
76 |
with torch.no_grad():
|
77 |
outputs = model(**inputs)
|
78 |
+
probs = F.softmax(outputs.logits, dim=1) # Convert logits to probabilities
|
79 |
+
spam_prob = probs[0][1].item() # Probability of Spam
|
80 |
|
81 |
+
# Adjust classification based on threshold (better than argmax)
|
82 |
label = "Spam" if spam_prob > 0.5 else "Not Spam"
|
83 |
|
84 |
+
# Save results using external function
|
85 |
+
save_results_to_repo(text_output, label)
|
86 |
|
87 |
return text_output, label
|
88 |
|
|
|
102 |
)
|
103 |
|
104 |
# Launch App
|
105 |
+
if __name__ == "__main__":
|
106 |
+
demo.launch()
|