Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,943 Bytes
9286cfe b453b6a 8d862e5 df122aa 8d862e5 b453b6a 9e58ba6 fa8374e b453b6a df122aa b453b6a 9587e73 b453b6a 9bdc30c b453b6a 7f96c09 df122aa b453b6a 0cbc98b 4e212b7 b453b6a 4ffd99e b453b6a df122aa feeedf2 df122aa b453b6a df122aa 4ffd99e b453b6a df122aa b453b6a 4ffd99e b453b6a 4ffd99e b453b6a 4e212b7 babee83 df122aa 4e212b7 a4aa344 4e212b7 a4aa344 4e212b7 4ffd99e 4e212b7 df122aa b634d02 df122aa a4aa344 df122aa a4aa344 df122aa babee83 df122aa babee83 078cb05 9d3a176 b453b6a 2244ce5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import spaces
import gradio as gr
from sd3_pipeline import StableDiffusion3Pipeline
import torch
import random
import numpy as np
import os
import gc
from diffusers import AutoencoderKLWan
from wan_pipeline import WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from PIL import Image
from diffusers.utils import export_to_video
from huggingface_hub import login
# Authenticate with HF
login(token=os.getenv('HF_TOKEN'))
def set_seed(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
model_paths = {
"sd3": "stabilityai/stable-diffusion-3-medium-diffusers",
"sd3.5": "stabilityai/stable-diffusion-3.5-large",
# "wan-t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
}
current_model = None
OUTPUT_DIR = "generated_videos"
os.makedirs(OUTPUT_DIR, exist_ok=True)
def load_model(model_name):
global current_model
if current_model is not None:
del current_model
torch.cuda.empty_cache()
gc.collect()
if "wan-t2v" in model_name:
vae = AutoencoderKLWan.from_pretrained(model_paths[model_name], subfolder="vae", torch_dtype=torch.bfloat16)
scheduler = UniPCMultistepScheduler(prediction_type='flow_prediction', use_flow_sigmas=True, num_train_timesteps=1000, flow_shift=8.0)
current_model = WanPipeline.from_pretrained(model_paths[model_name], vae=vae, torch_dtype=torch.float16).to("cuda")
current_model.scheduler = scheduler
else:
current_model = StableDiffusion3Pipeline.from_pretrained(model_paths[model_name], torch_dtype=torch.bfloat16).to("cuda")
return current_model.to("cuda")
@spaces.GPU(duration=120)
def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps=50,
use_cfg_zero_star=True, use_zero_init=True, zero_steps=0,
seed=None, compare_mode=False):
model = load_model(model_name)
if seed is None:
seed = random.randint(0, 2**32 - 1)
set_seed(seed)
is_video_model = "wan-t2v" in model_name
print('prompt: ',prompt)
if is_video_model:
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
video1_frames = model(
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
num_frames=81,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
use_cfg_zero_star=True,
use_zero_init=True,
zero_steps=zero_steps
).frames[0]
video1_path = os.path.join(OUTPUT_DIR, f"{seed}_CFG-Zero-Star.mp4")
export_to_video(video1_frames, video1_path, fps=16)
return None, None, video1_path, seed
if compare_mode:
set_seed(seed)
image1 = model(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
use_cfg_zero_star=True,
use_zero_init=use_zero_init,
zero_steps=zero_steps
).images[0]
set_seed(seed)
image2 = model(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
use_cfg_zero_star=False,
use_zero_init=use_zero_init,
zero_steps=zero_steps
).images[0]
return image1, image2, seed
else:
image = model(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
use_cfg_zero_star=use_cfg_zero_star,
use_zero_init=use_zero_init,
zero_steps=zero_steps
).images[0]
if use_cfg_zero_star:
return image, None, seed
else:
return None, image, seed
# Gradio UI with left-right layout
with gr.Blocks() as demo:
gr.HTML("""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models
</div>
<div style="text-align: center;">
<a href="https://github.com/WeichenFan/CFG-Zero-star">Code</a> |
<a href="https://arxiv.org/abs/2503.18886">Paper</a>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(value="A spooky haunted mansion on a hill silhouetted by a full moon.", label="Enter your prompt")
model_choice = gr.Dropdown(choices=list(model_paths.keys()), label="Choose Model")
guidance_scale = gr.Slider(1, 20, value=4.0, step=0.5, label="Guidance Scale")
inference_steps = gr.Slider(10, 100, value=50, step=5, label="Inference Steps")
use_opt_scale = gr.Checkbox(value=True, label="Use Optimized-Scale")
use_zero_init = gr.Checkbox(value=True, label="Use Zero Init")
zero_steps = gr.Slider(0, 20, value=1, step=1, label="Zero out steps")
seed = gr.Number(value=42, label="Seed (Leave blank for random)")
compare_mode = gr.Checkbox(value=True, label="Compare Mode")
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
out1 = gr.Image(type="pil", label="CFG-Zero* Image")
out2 = gr.Image(type="pil", label="CFG Image")
#video = gr.Video(label="Video")
used_seed = gr.Textbox(label="Used Seed")
def update_params(model_name):
print('model_name: ',model_name)
if model_name == "wan-t2v":
return (
gr.update(value=5),
gr.update(value=50),
gr.update(value=True),
gr.update(value=True),
gr.update(value=1)
)
else:
return (
gr.update(value=4.0),
gr.update(value=50),
gr.update(value=True),
gr.update(value=True),
gr.update(value=1)
)
model_choice.change(
fn=update_params,
inputs=[model_choice],
outputs=[guidance_scale, inference_steps, use_opt_scale, use_zero_init, zero_steps]
)
generate_btn.click(
fn=generate_content,
inputs=[
prompt, model_choice, guidance_scale, inference_steps,
use_opt_scale, use_zero_init, zero_steps, seed, compare_mode
],
outputs=[out1, out2, used_seed]
)
demo.launch(ssr_mode=False)
|