File size: 6,943 Bytes
9286cfe
b453b6a
 
 
 
 
 
 
 
 
 
 
 
8d862e5
 
df122aa
 
8d862e5
b453b6a
 
 
 
 
 
 
 
 
9e58ba6
fa8374e
b453b6a
 
 
 
 
 
 
 
 
df122aa
 
 
 
b453b6a
9587e73
b453b6a
9bdc30c
b453b6a
 
 
7f96c09
df122aa
b453b6a
0cbc98b
4e212b7
 
 
 
b453b6a
 
 
 
 
 
4ffd99e
b453b6a
df122aa
 
 
 
 
 
 
 
 
 
 
feeedf2
df122aa
 
 
 
 
 
b453b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df122aa
4ffd99e
b453b6a
 
 
 
 
 
 
 
 
df122aa
b453b6a
4ffd99e
b453b6a
4ffd99e
b453b6a
4e212b7
babee83
 
 
 
 
 
 
 
 
 
 
df122aa
4e212b7
 
 
 
a4aa344
4e212b7
 
a4aa344
4e212b7
 
 
 
 
 
 
4ffd99e
4e212b7
df122aa
 
b634d02
df122aa
 
 
 
 
 
 
 
 
 
 
a4aa344
df122aa
 
a4aa344
df122aa
 
 
 
 
 
 
 
 
babee83
 
df122aa
 
babee83
078cb05
9d3a176
b453b6a
2244ce5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import spaces
import gradio as gr
from sd3_pipeline import StableDiffusion3Pipeline
import torch
import random
import numpy as np
import os
import gc
from diffusers import AutoencoderKLWan
from wan_pipeline import WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from PIL import Image
from diffusers.utils import export_to_video
from huggingface_hub import login

# Authenticate with HF
login(token=os.getenv('HF_TOKEN'))

def set_seed(seed):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

model_paths = {
    "sd3": "stabilityai/stable-diffusion-3-medium-diffusers",
    "sd3.5": "stabilityai/stable-diffusion-3.5-large",
    # "wan-t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
}

current_model = None
OUTPUT_DIR = "generated_videos"
os.makedirs(OUTPUT_DIR, exist_ok=True)

def load_model(model_name):
    global current_model
    if current_model is not None:
        del current_model
        torch.cuda.empty_cache()
        gc.collect()

    if "wan-t2v" in model_name:
        vae = AutoencoderKLWan.from_pretrained(model_paths[model_name], subfolder="vae", torch_dtype=torch.bfloat16)
        scheduler = UniPCMultistepScheduler(prediction_type='flow_prediction', use_flow_sigmas=True, num_train_timesteps=1000, flow_shift=8.0)
        current_model = WanPipeline.from_pretrained(model_paths[model_name], vae=vae, torch_dtype=torch.float16).to("cuda")
        current_model.scheduler = scheduler
    else:
        current_model = StableDiffusion3Pipeline.from_pretrained(model_paths[model_name], torch_dtype=torch.bfloat16).to("cuda")

    return current_model.to("cuda")

@spaces.GPU(duration=120)
def generate_content(prompt, model_name, guidance_scale=7.5, num_inference_steps=50,
                     use_cfg_zero_star=True, use_zero_init=True, zero_steps=0,
                     seed=None, compare_mode=False):
    
    model = load_model(model_name)
    if seed is None:
        seed = random.randint(0, 2**32 - 1)
    set_seed(seed)

    is_video_model = "wan-t2v" in model_name
    print('prompt: ',prompt)
    if is_video_model:
        negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
        video1_frames = model(
            prompt=prompt,
            negative_prompt=negative_prompt,
            height=480,
            width=832,
            num_frames=81,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            use_cfg_zero_star=True,
            use_zero_init=True,
            zero_steps=zero_steps
        ).frames[0]
        video1_path = os.path.join(OUTPUT_DIR, f"{seed}_CFG-Zero-Star.mp4")
        export_to_video(video1_frames, video1_path, fps=16)

        return None, None, video1_path, seed

    if compare_mode:
        set_seed(seed)
        image1 = model(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            use_cfg_zero_star=True,
            use_zero_init=use_zero_init,
            zero_steps=zero_steps
        ).images[0]

        set_seed(seed)
        image2 = model(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            use_cfg_zero_star=False,
            use_zero_init=use_zero_init,
            zero_steps=zero_steps
        ).images[0]

        return image1, image2, seed
    else:
        image = model(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            use_cfg_zero_star=use_cfg_zero_star,
            use_zero_init=use_zero_init,
            zero_steps=zero_steps
        ).images[0]

        if use_cfg_zero_star:
            return image, None, seed
        else:
            return None, image, seed

# Gradio UI with left-right layout
with gr.Blocks() as demo:
    gr.HTML("""
        <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
            CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models
        </div>
        <div style="text-align: center;">
            <a href="https://github.com/WeichenFan/CFG-Zero-star">Code</a> |
            <a href="https://arxiv.org/abs/2503.18886">Paper</a>
        </div>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Textbox(value="A spooky haunted mansion on a hill silhouetted by a full moon.", label="Enter your prompt")
            model_choice = gr.Dropdown(choices=list(model_paths.keys()), label="Choose Model")
            guidance_scale = gr.Slider(1, 20, value=4.0, step=0.5, label="Guidance Scale")
            inference_steps = gr.Slider(10, 100, value=50, step=5, label="Inference Steps")
            use_opt_scale = gr.Checkbox(value=True, label="Use Optimized-Scale")
            use_zero_init = gr.Checkbox(value=True, label="Use Zero Init")
            zero_steps = gr.Slider(0, 20, value=1, step=1, label="Zero out steps")
            seed = gr.Number(value=42, label="Seed (Leave blank for random)")
            compare_mode = gr.Checkbox(value=True, label="Compare Mode")
            generate_btn = gr.Button("Generate")

        with gr.Column(scale=2):
            out1 = gr.Image(type="pil", label="CFG-Zero* Image")
            out2 = gr.Image(type="pil", label="CFG Image")
            #video = gr.Video(label="Video")
            used_seed = gr.Textbox(label="Used Seed")

    def update_params(model_name):
        print('model_name: ',model_name)
        if model_name == "wan-t2v":
            return (
                gr.update(value=5),
                gr.update(value=50),
                gr.update(value=True),
                gr.update(value=True),
                gr.update(value=1)
            )
        else:
            return (
                gr.update(value=4.0),
                gr.update(value=50),
                gr.update(value=True),
                gr.update(value=True),
                gr.update(value=1)
            )

    model_choice.change(
        fn=update_params,
        inputs=[model_choice],
        outputs=[guidance_scale, inference_steps, use_opt_scale, use_zero_init, zero_steps]
    )

    generate_btn.click(
        fn=generate_content,
        inputs=[
            prompt, model_choice, guidance_scale, inference_steps,
            use_opt_scale, use_zero_init, zero_steps, seed, compare_mode
        ],
        outputs=[out1, out2, used_seed]
    )

demo.launch(ssr_mode=False)