amazon_shop / app.py
John Yang
Update output format
7fb90e2
import gradio as gr
import json, time, torch
from transformers import BartTokenizer, BartForConditionalGeneration, AutoModel, AutoTokenizer
from webshop_lite import dict_to_fake_html
from predict_help import (
Page, convert_dict_to_actions, convert_html_to_text,
parse_results_amz, parse_item_page_amz,
parse_results_ws, parse_item_page_ws,
parse_results_ebay, parse_item_page_ebay,
WEBSHOP_URL, WEBSHOP_SESSION
)
ENVIRONMENTS = ['amazon', 'webshop', 'ebay']
# IL+RL: 'webshop/il-rl-choice-bert-image_1'
# IL: 'webshop/il-choice-bert-image_0'
BERT_MODEL_PATH = 'webshop/il-choice-bert-image_0'
# load IL models
bart_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large')
bart_model = BartForConditionalGeneration.from_pretrained('webshop/il_search_bart')
bert_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', truncation_side='left')
bert_tokenizer.add_tokens(['[button]', '[button_]', '[clicked button]', '[clicked button_]'], special_tokens=True)
bert_model = AutoModel.from_pretrained(BERT_MODEL_PATH, trust_remote_code=True)
def process_str(s):
s = s.lower().replace('"', '').replace("'", "").strip()
s = s.replace('[sep]', '[SEP]')
return s
def process_goal(state):
state = state.lower().replace('"', '').replace("'", "")
state = state.replace('amazon shopping game\ninstruction:', '').replace('\n[button] search [button_]', '').strip()
if ', and price lower than' in state:
state = state.split(', and price lower than')[0]
return state
def data_collator(batch):
state_input_ids, state_attention_mask, action_input_ids, action_attention_mask, sizes, labels, images = [], [], [], [], [], [], []
for sample in batch:
state_input_ids.append(sample['state_input_ids'])
state_attention_mask.append(sample['state_attention_mask'])
action_input_ids.extend(sample['action_input_ids'])
action_attention_mask.extend(sample['action_attention_mask'])
sizes.append(sample['sizes'])
labels.append(sample['labels'])
images.append(sample['images'])
max_state_len = max(sum(x) for x in state_attention_mask)
max_action_len = max(sum(x) for x in action_attention_mask)
return {
'state_input_ids': torch.tensor(state_input_ids)[:, :max_state_len],
'state_attention_mask': torch.tensor(state_attention_mask)[:, :max_state_len],
'action_input_ids': torch.tensor(action_input_ids)[:, :max_action_len],
'action_attention_mask': torch.tensor(action_attention_mask)[:, :max_action_len],
'sizes': torch.tensor(sizes),
'images': torch.tensor(images),
'labels': torch.tensor(labels),
}
def bart_predict(input):
input_ids = bart_tokenizer(input)['input_ids']
input_ids = torch.tensor(input_ids).unsqueeze(0)
output = bart_model.generate(input_ids, max_length=512, num_return_sequences=5, num_beams=5)
return bart_tokenizer.batch_decode(output.tolist(), skip_special_tokens=True)[0]
def bert_predict(obs, info, softmax=True):
valid_acts = info['valid']
assert valid_acts[0].startswith('click[')
state_encodings = bert_tokenizer(process_str(obs), max_length=512, truncation=True, padding='max_length')
action_encodings = bert_tokenizer(list(map(process_str, valid_acts)), max_length=512, truncation=True, padding='max_length')
batch = {
'state_input_ids': state_encodings['input_ids'],
'state_attention_mask': state_encodings['attention_mask'],
'action_input_ids': action_encodings['input_ids'],
'action_attention_mask': action_encodings['attention_mask'],
'sizes': len(valid_acts),
'images': info['image_feat'].tolist(),
'labels': 0
}
batch = data_collator([batch])
outputs = bert_model(**batch)
if softmax:
idx = torch.multinomial(torch.nn.functional.softmax(outputs.logits[0], dim=0), 1)[0].item()
else:
idx = outputs.logits[0].argmax(0).item()
return valid_acts[idx]
def get_return_value(env, asin, options, search_terms, page_num, product):
asin_url = None
# Determine product URL + options based on environment
if env == 'webshop':
query_str = "+".join(search_terms.split())
options_str = json.dumps(options)
asin_url = (
f'{WEBSHOP_URL}/item_page/{WEBSHOP_SESSION}/'
f'{asin}/{query_str}/{page_num}/{options_str}'
)
else:
asin_url = f"https://www.ebay.com/itm/{asin}" if env == 'ebay' else \
f"https://www.amazon.com/dp/{asin}"
# Extract relevant fields for product
product_reduced = {k: v for k, v in product.items() if k in ["asin", "Title", "Description", "BulletPoints"]}
product_reduced["Description"] = product_reduced["Description"][:100] + "..."
product_reduced["Features"] = product_reduced.pop("BulletPoints")
product_reduced["Features"] = product_reduced["Features"][:100] + "..."
# Create HTML to show link to product
html = """<!DOCTYPE html><html><head><title>Chosen Product</title></head><body>"""
html += f"""Product Image:<img src="{product["MainImage"]}" height="50px" /><br>""" if len(product["MainImage"]) > 0 else ""
html += f"""Link to Product:
<a href="{asin_url}" style="color:blue;text-decoration:underline;" target="_blank">{asin_url}</a>
</body></html>"""
return product_reduced, options if len(options) > 0 else "None Selected", html
def predict(obs, info):
"""
Given WebShop environment observation and info, predict an action.
"""
valid_acts = info['valid']
if valid_acts[0].startswith('click['):
return bert_predict(obs, info)
else:
return "search[" + bart_predict(process_goal(obs)) + "]"
def run_episode(goal, env, verbose=True):
"""
Interact with amazon to find a product given input goal.
Input: text goal
Output: a url of found item on amazon.
"""
env = env.lower()
if env not in ENVIRONMENTS:
print(f"[ERROR] Environment {env} not recognized")
obs = "Amazon Shopping Game\nInstruction:" + goal + "\n[button] search [button]"
info = {'valid': ['search[stuff]'], 'image_feat': torch.zeros(512)}
product_map = {}
title_to_asin_map = {}
search_results_cache = {}
visited_asins, clicked_options = set(), set()
sub_page_type, page_type, page_num = None, None, None
search_terms, prod_title, asin = None, None, None
options = {}
for i in range(100):
# Run prediction
action = predict(obs, info)
if verbose:
print("====")
print(action)
# Previous Page Type, Action -> Next Page Type
action_content = action[action.find("[")+1:action.find("]")]
prev_page_type = page_type
if action.startswith('search['):
page_type = Page.RESULTS
search_terms = action_content
page_num = 1
elif action.startswith('click['):
if action.startswith('click[item -'):
prod_title = action_content[len("item -"):].strip()
found = False
for key in title_to_asin_map:
if prod_title == key:
asin = title_to_asin_map[key]
page_type = Page.ITEM_PAGE
visited_asins.add(asin)
found = True
break
if not found:
raise Exception("Product to click not found")
elif any(x.value in action for x in [Page.DESC, Page.FEATURES, Page.REVIEWS]):
page_type = Page.SUB_PAGE
sub_page_type = Page(action_content.lower())
elif action == 'click[< prev]':
if sub_page_type is not None:
page_type, sub_page_type = Page.ITEM_PAGE, None
elif prev_page_type == Page.ITEM_PAGE:
page_type = Page.RESULTS
options, clicked_options = {}, set()
elif prev_page_type == Page.RESULTS and page_num > 1:
page_type = Page.RESULTS
page_num -= 1
elif action == 'click[next >]':
page_type = Page.RESULTS
page_num += 1
elif action.lower() == 'click[back to search]':
page_type = Page.SEARCH
elif action == 'click[buy now]':
return get_return_value(env, asin, options, search_terms, page_num, product_map[asin])
elif prev_page_type == Page.ITEM_PAGE:
found = False
for opt_name, opt_values in product_map[asin]["options"].items():
if action_content in opt_values:
options[opt_name] = action_content
page_type = Page.ITEM_PAGE
clicked_options.add(action_content)
found = True
break
if not found:
raise Exception("Unrecognized action: " + action)
else:
raise Exception("Unrecognized action:" + action)
if verbose:
print(f"Parsing {page_type.value} page...")
# URL -> Real HTML -> Dict of Info
if page_type == Page.RESULTS:
if search_terms in search_results_cache:
data = search_results_cache[search_terms]
if verbose:
print(f"Loading cached results page for \"{search_terms}\"")
else:
begin = time.time()
if env == 'amazon':
data = parse_results_amz(search_terms, page_num, verbose)
if env == 'webshop':
data = parse_results_ws(search_terms, page_num, verbose)
if env == 'ebay':
data = parse_results_ebay(search_terms, page_num, verbose)
end = time.time()
if verbose:
print(f"Parsing search results took {end-begin} seconds")
search_results_cache[search_terms] = data
for d in data:
title_to_asin_map[d['Title']] = d['asin']
elif page_type == Page.ITEM_PAGE or page_type == Page.SUB_PAGE:
if asin in product_map:
if verbose:
print("Loading cached item page for", asin)
data = product_map[asin]
else:
begin = time.time()
if env == 'amazon':
data = parse_item_page_amz(asin, verbose)
if env == 'webshop':
data = parse_item_page_ws(asin, search_terms, page_num, options, verbose)
if env == 'ebay':
data = parse_item_page_ebay(asin, verbose)
end = time.time()
if verbose:
print("Parsing item page took", end-begin, "seconds")
product_map[asin] = data
elif page_type == Page.SEARCH:
if verbose:
print("Executing search")
obs = "Amazon Shopping Game\nInstruction:" + goal + "\n[button] search [button]"
info = {'valid': ['search[stuff]'], 'image_feat': torch.zeros(512)}
continue
else:
raise Exception("Page of type `", page_type, "` not found")
# Dict of Info -> Fake HTML -> Text Observation
begin = time.time()
html_str = dict_to_fake_html(data, page_type, asin, sub_page_type, options, product_map, goal)
obs = convert_html_to_text(html_str, simple=False, clicked_options=clicked_options, visited_asins=visited_asins)
end = time.time()
if verbose:
print("[Page Info -> WebShop HTML -> Observation] took", end-begin, "seconds")
# Dict of Info -> Valid Action State (Info)
begin = time.time()
prod_arg = product_map if page_type == Page.ITEM_PAGE else data
info = convert_dict_to_actions(page_type, prod_arg, asin, page_num)
end = time.time()
if verbose:
print("Extracting available actions took", end-begin, "seconds")
if i == 50:
return get_return_value(env, asin, options, search_terms, page_num, product_map[asin])
gr.Interface(
fn=run_episode,
inputs=[
gr.inputs.Textbox(lines=7, label="Input Text"),
gr.inputs.Radio(['Amazon', 'eBay'], type="value", default="Amazon", label='Environment')
],
outputs=[
gr.outputs.JSON(label="Selected Product"),
gr.outputs.JSON(label="Selected Options"),
gr.outputs.HTML()
],
examples=[
["I want to find a gold floor lamp with a glass shade and a nickel finish that i can use for my living room, and price lower than 270.00 dollars", "Amazon"],
["I need some cute heart-shaped glittery cupcake picks as a gift to bring to a baby shower", "Amazon"],
["I want to buy ballet shoes which have rubber sole in grey suede color and a size of 6", "Amazon"],
["I would like a 7 piece king comforter set decorated with flowers and is machine washable", "Amazon"],
["I'm trying to find white bluetooth speakers that are not only water resistant but also come with stereo sound", "eBay"],
["find me the soy free 3.5 ounce 4-pack of dang thai rice chips, and make sure they are the aged cheddar flavor. i also need the ones in the resealable bags", "eBay"],
["I am looking for a milk chocolate of 1 pound size in a single pack for valentine day", "eBay"],
["I'm looking for a mini pc intel core desktop computer which supports with windows 11", "eBay"]
],
title="WebShop",
article="<p style='padding-top:15px;text-align:center;'>To learn more about this project, check out the <a href='https://webshop-pnlp.github.io/' target='_blank'>project page</a>!</p>",
description="<p style='text-align:center;'>Sim-to-real transfer of agent trained on WebShop to search a desired product on Amazon from any natural language query!</p>",
).launch(inline=False)