Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,187 +1,43 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# condition_capture['prev_schema'] = condition_capture['schema']
|
45 |
-
condition_capture['textual_value']=relevent_value(str(condition_capture['schema']).lower(),50)
|
46 |
-
if len(condition_capture['schema'])!=0:
|
47 |
-
html_page = condition_capture['textual_value'][1]
|
48 |
-
textual_value = condition_capture['textual_value'][0]
|
49 |
-
st.write("<br>",unsafe_allow_html=True)
|
50 |
-
|
51 |
-
with st.container(border=True,height=int(screen_height/2.3)):
|
52 |
-
st.header("Wikipedia insights")
|
53 |
-
updated_schema = st.button("Start processing")
|
54 |
-
selector=st.empty()
|
55 |
-
write =st.empty()
|
56 |
-
start_page= selector.select_slider("Select a range of color wavelength",options=[i for i in html_page],key="start_page")
|
57 |
-
write.write(html_page[start_page],unsafe_allow_html=True)
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
# )
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
with column1:
|
73 |
-
|
74 |
-
if str(schema)!=str({}):
|
75 |
-
tabs = st.tabs(["Schema","Data Generation"])
|
76 |
-
with tabs[0]:
|
77 |
-
if str(schema)!=str({}):
|
78 |
-
|
79 |
-
schema_column1,schema_column2 = st.columns(2)
|
80 |
-
with schema_column1:
|
81 |
-
edited_df = st.data_editor([str(i) for index,i in enumerate(schema)],hide_index=True,use_container_width=True,num_rows='dynamic',height=int(screen_height/3))
|
82 |
-
|
83 |
-
with schema_column2:
|
84 |
-
number = st.number_input("Number of rows",min_value=1,max_value=1000,value=10)
|
85 |
-
if number!=condition_capture['count'] and updated_schema:
|
86 |
-
condition_capture['count'] = number
|
87 |
-
|
88 |
-
|
89 |
-
with open("/home/user/app/animation/edit_file.json") as animate:
|
90 |
-
url_json=json.load(animate)
|
91 |
-
st_lottie(url_json,height = int(screen_height/3))
|
92 |
-
|
93 |
-
|
94 |
-
with tabs[1]:
|
95 |
-
with open("/home/user/app/animation/no data animation.json") as animate:
|
96 |
-
url_json=json.load(animate)
|
97 |
-
dataframe=st.empty()
|
98 |
-
|
99 |
-
if condition_capture['count']==0:
|
100 |
-
st_lottie(url_json,height = int(screen_height/3))
|
101 |
-
|
102 |
-
else:
|
103 |
-
smart_append=[]
|
104 |
-
if condition_capture['prev_schema'] != condition_capture['schema']:
|
105 |
-
condition_capture['prev_schema'] = condition_capture['schema']
|
106 |
-
condition_capture['current_append']={}
|
107 |
-
|
108 |
-
for text_indexing,store in enumerate(actual_value(textual_value,schema)):
|
109 |
-
dummy_value =dictionary_formatting(store)
|
110 |
-
for keys in dummy_value:
|
111 |
-
while len(dummy_value[keys])>=2:
|
112 |
-
dummy_value[keys].pop(0)
|
113 |
-
dummy_value = dictionary_formatting(dummy_value)
|
114 |
-
|
115 |
-
if dummy_value != None:
|
116 |
-
|
117 |
-
|
118 |
-
smart_append.append(dummy_value)
|
119 |
-
print(dummy_value)
|
120 |
-
for keys in dummy_value:
|
121 |
-
if keys not in condition_capture['current_append']:
|
122 |
-
condition_capture['current_append'][str(keys)]=[]
|
123 |
-
condition_capture['current_append'][str(keys)].append(str([i for i in dummy_value[keys]]))
|
124 |
-
dataframe.dataframe(condition_capture['current_append'])
|
125 |
-
|
126 |
-
|
127 |
-
if len(condition_capture['current_append'][[i for i in condition_capture['current_append']][-1]])>=condition_capture['count']:
|
128 |
-
break
|
129 |
-
|
130 |
-
# print(dummy_value)
|
131 |
-
# if smart_check(dummy_value)!=True:
|
132 |
-
# smart_value=verification(dummy_value)
|
133 |
-
# if statement(condition_capture['schema'],smart_value):
|
134 |
-
# st.dataframe(smart_value)
|
135 |
-
condition_capture['current_append']={}
|
136 |
-
if len(smart_append)==0:
|
137 |
-
|
138 |
-
ranger=len(condition_capture['current_append'][[i for i in condition_capture['current_append']][0]])
|
139 |
-
for indexing in range(ranger):
|
140 |
-
working_dict = {}
|
141 |
-
for j in condition_capture['current_append']:
|
142 |
-
|
143 |
-
working_dict[j]=condition_capture['current_append'][j][indexing][0]
|
144 |
-
smart_append.append(working_dict)
|
145 |
-
smart_movement = sorting(smart_append)
|
146 |
-
|
147 |
-
for keys in smart_movement:
|
148 |
-
value=eval(keys)
|
149 |
-
for keys in value:
|
150 |
-
if keys not in condition_capture['current_append']:
|
151 |
-
condition_capture['current_append'][str(keys)]=[]
|
152 |
-
condition_capture['current_append'][str(keys)].append([str(i) for i in value[keys]])
|
153 |
-
dataframe.dataframe(condition_capture['current_append'])
|
154 |
-
for indexing,j in enumerate(smart_movement):
|
155 |
-
try:
|
156 |
-
# Convert string to dictionary
|
157 |
-
dummy_value = eval(j)
|
158 |
-
|
159 |
-
# Process dictionary values
|
160 |
-
for key in dummy_value:
|
161 |
-
while len(dummy_value[key]) >= 2:
|
162 |
-
dummy_value[key].pop(0)
|
163 |
-
|
164 |
-
# Format dictionary
|
165 |
-
formatted = dictionary_formatting(dummy_value)
|
166 |
-
print(formatted)
|
167 |
-
# Verify and store result
|
168 |
-
verification_result = verification(formatted) if formatted else None
|
169 |
-
for j in verification_result:
|
170 |
-
if j in condition_capture['current_append']:
|
171 |
-
condition_capture['current_append'][j][indexing]=[str(i) for i in verification_result[j]]
|
172 |
-
dataframe.dataframe(condition_capture['current_append'])
|
173 |
-
|
174 |
-
except:
|
175 |
-
pass
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
prompt = st.text_input(label="Please use prompt to generate data",value=condition_capture['prompt'])
|
180 |
-
if prompt != str(condition_capture['prompt']):
|
181 |
-
|
182 |
-
condition_capture['prompt'] = prompt
|
183 |
-
schema = schema_generator(prompt)
|
184 |
-
condition_capture['schema'] = schema
|
185 |
-
condition_capture['current_append']={}
|
186 |
-
|
187 |
-
st.rerun()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Model ID for Llama 3 8B instruct (replace with the exact model you want)
|
6 |
+
MODEL_ID = "meta-llama/Llama-3-8b-Instruct-hf"
|
7 |
+
|
8 |
+
# Load the text-generation pipeline with device_map="auto" to use GPU if available
|
9 |
+
generator = pipeline(
|
10 |
+
"text-generation",
|
11 |
+
model=MODEL_ID,
|
12 |
+
torch_dtype=torch.float16,
|
13 |
+
device_map="auto",
|
14 |
+
)
|
15 |
+
|
16 |
+
def generate_response(prompt, max_length=512, temperature=0.7):
|
17 |
+
# Format prompt for Llama 3 instruct style
|
18 |
+
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
|
19 |
+
output = generator(
|
20 |
+
formatted_prompt,
|
21 |
+
max_length=max_length,
|
22 |
+
temperature=temperature,
|
23 |
+
do_sample=True,
|
24 |
+
top_p=0.95,
|
25 |
+
num_return_sequences=1,
|
26 |
+
)
|
27 |
+
generated_text = output[0]["generated_text"]
|
28 |
+
# Extract the response after the [/INST] token
|
29 |
+
response = generated_text.split("[/INST]")[-1].strip()
|
30 |
+
return response
|
31 |
+
|
32 |
+
with gr.Blocks() as demo:
|
33 |
+
gr.Markdown("# Chat with Llama 3 (8B Instruct)")
|
34 |
+
with gr.Row():
|
35 |
+
with gr.Column():
|
36 |
+
user_input = gr.Textbox(lines=3, placeholder="Type your message here...", label="Your Message")
|
37 |
+
submit_btn = gr.Button("Submit")
|
38 |
+
with gr.Column():
|
39 |
+
output = gr.Textbox(lines=10, label="Llama 3 Response")
|
40 |
+
submit_btn.click(fn=generate_response, inputs=user_input, outputs=output)
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|