File size: 18,404 Bytes
629ef31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

import wikipedia
import wikipediaapi
import regex as re
from sentence_transformers import SentenceTransformer,util
from transformers import pipeline
import requests

def consume_llm_api(prompt):
    """
    Sends a prompt to the LLM API and processes the streamed response.
    """
    url = "https://3c93-70-167-32-130.ngrok-free.app/api/llm-response"
    headers = {"Content-Type": "application/json"}
    payload = {"prompt": prompt,"extension":"1"}

    
    print("Sending prompt to the LLM API...")
    response_ = requests.post(url, json=payload,verify=False)
    response_data = response_.json()
    return response_data['text']
# def consume_llm_api(prompt):
#     model = Ollama(model="llama3:latest", temperature=0.3)
#     return model.invoke(prompt)


def relevent_value(long_query,count=3):
    results = wikipedia.search(long_query,results=count)
    
    wiki_wiki = wikipediaapi.Wikipedia(user_agent='MyProjectName ([email protected])', language='en',extract_format=wikipediaapi.ExtractFormat.WIKI)
    wiki_wiki_html = wikipediaapi.Wikipedia(user_agent='MyProjectName ([email protected])', language='en',extract_format=wikipediaapi.ExtractFormat.HTML)
    values={}
    html_values={}
    for result in results:
        page_py = wiki_wiki.page(result)
        page_html = wiki_wiki_html.page(result)
        html_values[result]=page_html.text

        values[result]=page_py.text
    return values,html_values


from langchain_community.llms import Ollama
model=Ollama(model="llama3:latest",temperature=0.3)
agent_understanding = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
qa_model = pipeline('question-answering', model='deepset/roberta-base-squad2', tokenizer='deepset/roberta-base-squad2')

# textual_value

def construction_edit(textual_value,schema):
    construction_prompt= textual_value+"\n"
    construction_prompt+="Above is the generated text from wikipedia and below is the rule that has to be filled in the data. \n"
    construction_prompt+="The data should be in the form of a dictionary and it must follow the following schema: \n"
    construction_prompt+=str(schema)+"\n"
    construction_prompt+="The length of each list of each key must be same in the generated data(mandatory)."+"\n"
    construction_prompt+="No helper text like 'Here is the filled-in JSON schema based on the provided text' or 'Note: I've filled in the keys with relevant data' ."+ "\n"
    construction_prompt+="The output must be a dictionary"+"\n"
    constructed_text=consume_llm_api(construction_prompt)
    return constructed_text

def dictionary_check(construction_edit):
    for keys in construction_edit:
        if len(construction_edit[keys])==0:
            return False
    return True

def actual_value(textual_value,schema):
    for j in textual_value:
        formatted_result = str(textual_value[j])+ "\n"
        formatted_result += "Please fill the following schema with the relevant data from the text above."+ "\n"
        formatted_result += "Here is the schema"+"\n"
        formatted_result += str(schema)
        formatted_result += "Please generate data according to schema and fill this template with your answers.\n"
        formatted_result += "You have to fill each key with the relevant data from the text above."+ "\n"
        formatted_result += "Please return the exact key value pair as the schema above. "+ "\n"
        formatted_result += "No helper text like 'Here is the filled-in JSON schema based on the provided text' or 'Note: I've filled in the keys with relevant data' ."+ "\n"
        formatted_result += "Only fill the keys that are in the schema."+ "\n"
        formatted_result += "If you are not sure about the data, you can add 'Na'."+ "\n"
        formatted_result += "It's an order you can not add any other text(e.g Here is the filled-in JSON schema) or note ."+ "\n"
        formatted_result += "The length of each list of each key must be same in the generated data(mandatory)."+"\n"
        raw_output = consume_llm_api(formatted_result)
        try:
            data=construction_edit(raw_output,schema)
            json_object_match = re.search(r'\{(?:[^{}]|(?R))*\}', data)
            access_value=eval(json_object_match.group())
            for schema_key in schema:
                if schema_key not in access_value:
                    access_value[schema_key]=list(set())
            for schema_key in access_value:
                access_value[schema_key]=list(set(access_value[schema_key]))
                access_value[schema_key]=list(set(access_value[schema_key])-set(["Na"]))
            yield access_value
            
        except:
            access_value=None
        



def context_data_relevancy(value,context):
    researcher =  "You are a professional reasearcher from data ."+ "\n"
    researcher += "You have to check can we fill some of the missing values in the "+str(value) + ". \n"  
    researcher += "The possible part which available in the context has to be relevent with already present data"+ ". \n"
    researcher += "from the context given below"+ ". \n"
    researcher += context+ "\n"
    researcher += "Be strict while thing of filling data"+ ". \n"
    researcher += "Just return @yahoo@ if 90% possible else @NO@"+ ". \n"


    result = consume_llm_api(researcher)
    return result

def agent_work_result(query,value):
    agent_understanding = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
    query_embedding = agent_understanding.encode(query)
    score1 = util.cos_sim(query_embedding,agent_understanding.encode("extract data for"))
    score2 = util.cos_sim(query_embedding,agent_understanding.encode("append data in "))
    score3 = util.cos_sim(query_embedding,agent_understanding.encode("check data"))

    if score1 > score2 and score1 > score3:
        # print("Extracting query:", query)
        question = "search word ?"
        result = qa_model(question=question, context=query)
        result = result['answer']
        print("Extracting query:", result)
        wikisearch = relevent_value(result,3)
        html_pages = wikisearch[1]
        wikisearch = wikisearch[0]

        for searches in wikisearch:
            if "@yahoo@" in context_data_relevancy(value,wikisearch[searches]):
                return wikisearch[searches]
        return "No data found"
    elif score2 > score1 and score2 > score3:
        try:
            print("Appending command:", query)
            question1 = "which value we are adding to key ?"
            result1 = qa_model(question=question1, context=query)
            question2 = "In which key we are appending ?"
            result2 = qa_model(question=question2, context=query)
            result1 = result1['answer']
            result2 = result2['answer']

            if  len(value[result2])==0:
                value[result2].append(result1)
                return "Now you can fill the remaining columns"
            else:
                return "You are putting value in the same key column again not accepted."
        except Exception as e:
            return str(e)
    else:
        min_=0
        max_=0
        for keys in value:
            
            if len(value[keys])<min_:
                min_=len(value[keys])
            if len(value[keys])>max_:
                max_=len(value[keys])
        if min_==max_:
            return "You dia a great job"
        else:
            return "Please append the data correctly so that the length of each key is same and data is also relevant"
    

def full_alignment(value):
    for values in value:
        if len(value[values])==0:
            return False
    return True

def query_formatting(result):
    values=result.split("\n")
    if len(values)!=0:
        values.pop(0)
    return values
def missing_value_completion(store,value):

    filler_prompt = "Below is mentioned ajson data\n"
    filler_prompt += str(value)+"\n"
    filler_prompt += "you only need to find missing data from the mentioned context section."
    filler_prompt += "You will return the results in below mentioned format.\n"
    filler_prompt += "The output will be in json format."
    filler_prompt += "context:\n"
    
    for search_key in store:
        try:
            fill_text = store[search_key]
            response = consume_llm_api(filler_prompt+fill_text)
        
            json_object_match = re.search(r'\{(?:[^{}]|(?R))*\}', response)
            access_value=eval(json_object_match.group())
            for keys in value:
                if len(value[keys])==0 and keys in access_value:
                    value[keys].append(access_value[keys].pop(0))
            print(value)
            if full_alignment(value):
                return value
        except:
            pass
        



def verification(value):
    

    validation_prompt = "Can you prepare a list of text(many as possible) that can be searched on google for filling(relevent data) the missing data below.\n"
    validation_prompt += str(value)+"\n"
    validation_prompt += "You need to prepare it by the following manner"
    validation_prompt += "1. Mention it line by line.\n"
    validation_prompt += "2. Please seperate it line by line.\n"
    validation_prompt += "3. Headers are not required\n"
    validation_prompt += "4. Please do not add any helper text example: Here is the required search queries , Here are the search queries .\n"
    validation_prompt += "5. Please do not add any notes"
    print("Searching for missing values")
    result=query_formatting(consume_llm_api(validation_prompt))

    for search_queries in result:
        if len(search_queries)!=0:
            print(search_queries)
            store=relevent_value(search_queries)
            html_pages = store[1]
            store = store[0]
            missing_value_completion(store,value)
        if full_alignment(value):
            return value

            



    return result

def agent_data_prep(value,query):
    end_result = ""
    angent_earlier_income ="0"
    pre_money_saving = "0"
    mission = "First to fill most importent column \n"
    while end_result!="You dia a great job":
        
        if full_alignment(value):
            return value
            

        agent_instruction = mission
        agent_instruction += "your previous income"+pre_money_saving+"\n"
        agent_instruction += "your current income"+angent_earlier_income+"\n"
        pre_money_saving = angent_earlier_income
        if end_result=="You are putting value in the same key column again not accepted.":
            
            mission = "Why you are always filling the"+[i for i in value][-1]+"only.\n"
            mission += "We are removing $1000 from you account \n"
            angent_earlier_income = str(int(angent_earlier_income)-1000)
        agent_instruction += end_result + "\n" +"Above is the result of your previous command. Please give the next command to the agent."
        agent_instruction += query  + "\n"
        agent_instruction += "Below is the data gathered upto now" + "\n"
        agent_instruction += str(value) + "\n"
        agent_instruction += "Please utilize the tool where you can command the agent to do any of the following tasks(one instruction at a time )"+ "\n"
        agent_instruction += "You only have to fill one value for each key if its not present. \n"
        agent_instruction += "From now onwards your each statement is understand as command which is categoried in any of the commands in mentioned below examples. \n"
        agent_instruction += "1. Ask agent to extract data from the web about anything like search for lamp production ,smartphone parts etc .\n"
        agent_instruction += "2. Give any specific value to append in current generated data . Please also mention the key in which the agent has to append the data .\n"
        agent_instruction += "3. Ask the agent to put the generated data on check weather each column fills correctly or not .\n"
        agent_instruction += "Here is the instruction to give commands to the agent. \n"
        agent_instruction += "You can give commands to the agent ,few examples are mentioned below. \n"
        
        agent_instruction += "1. Extract data about iron man suit  or iron man suit mark1 \n"
        agent_instruction += "(while thinking about extract data look into the data \n"
        agent_instruction += "where data can be append and then search relevent query \n"
        agent_instruction += "like green arrow from DC only if DC and green arraow is in different column key values )\n\n"

        agent_instruction += "2. Append value 'bmw 4' to Car Model key \n"
        agent_instruction += "(While appending the value you must have read the data from extract data command and remember, if you found anything relevent don't forget to append.\n"
        agent_instruction += "The appending value has to be different not already present.) \n\n"
            
        agent_instruction += "Any different grammatical version of the above commands. \n"
        agent_instruction += "Command has to be given only for 'data filling' purpose. \n"

        agent_instruction += "While command like search for or extract information about something it has to be relevent query search. \n"
        agent_instruction += "The relevent the query the more accurate the data will be. \n"
        agent_instruction += "Be cautious while filling the data It has to be correct. \n"
        agent_instruction += "For each correct append you will get $1000. \n"

        agent_instruction += "Give your command only no text . \n"

        agent_instruction += "There will an audit after filling all the columns on data for its validity. \n"
        agent_instruction += "Some mistakes are okay but But if we find you guilty there are some repercussion."

        # instructionto give commands to the agent

        judgement = Ollama(model = "llama3:latest")
        command = judgement.invoke(agent_instruction)
        
        end_result = agent_work_result(command,value)
        if "Now you can fill the remaining columns" in end_result:
            angent_earlier_income = str(int(angent_earlier_income)+1000)
        print("--------------------")
        print(value)
        print("--------------------")
    return value

def dictionary_formatting(value):
    new_dict={}
    for data_keys in [i for i in value]:
        key_values = data_keys.strip()
        if key_values in value:
            if key_values not in new_dict:
                new_dict[key_values] =[]
            new_dict[key_values] = value.pop(key_values)
        else:
            new_dict[key_values] = value.pop(data_keys)
    return new_dict
            
        
def schema_formatter(output):
    schema = {i:[] for i in output.split(",")}
    return schema
def schema_generator(query):
    
    formatting = "The above statement is given by the user. Please create a single .csv-based schema by following the points below:\n"

    formatting += "1. Only create the schema, no additional text or statement.\n"

    formatting += "2. Keep the schema simple, avoid complex column names.\n"

    formatting+=  "3. please only generate 5 schema if not mentioned.\n"

    formatting += "4. For example, if the user provides a statement like: 'Generate data for students getting placements from IIT Bombay,' the response should be:\n"

    formatting += "Student Name, Student Roll Number, Student Branch, Student Year, Student Placement Status, Student Company Name, Student Package, Student Location, Student Role\n"

    formatting += "Follow the above example but remember above is not actual schema you have to provide the schema depending on the user prompt.\n"

    formatting+=  "5. please only generate schema no notes or anything.\n"

    output=consume_llm_api(query+"\n"+formatting)

    return schema_formatter(output)
def sorting(data_dict):
    new_dict={str(i):0 for i in data_dict}

    for i in data_dict:
        for j in i:
            if len(i[j])!=0:
                new_dict[str(i)] +=1
    new_dict=[(new_dict[i],i) for i in new_dict]
    new_dict.sort(reverse=True)
    new_dict={i[-1]:i[0] for i in new_dict}
    return new_dict


def process_data(query):

    
        

        formatting = "The above statement is given by the user. Please create a single .csv-based schema by following the points below:\n"
        formatting += "1. Only create the schema, no additional text or statement.\n"
        formatting += "2. Keep the schema simple, avoid complex column names.\n"
        formatting+=  "3. please only generate 5 schema if not mentioned.\n"
        formatting += "4. For example, if the user provides a statement like: 'Generate data for students getting placements from IIT Bombay,' the response should be:\n"
        formatting += "Student Name, Student Roll Number, Student Branch, Student Year, Student Placement Status, Student Company Name, Student Package, Student Location, Student Role\n"
        formatting += "Follow the above example but remember above is not actual schema you have to provide the schema depending on the user prompt.\n"
        formatting+=  "5. please only generate schema no notes or anything.\n"
        print("Query:",query)
        output=consume_llm_api(query+"\n"+formatting)

        schema = {i:[] for i in output.split(",")}
        textual_value=relevent_value(str(schema).lower(),3)
        html_pages = textual_value[1]
        textual_value = textual_value[0]
        data_dict =[j for j in actual_value(textual_value,schema)]
        for j in sorting(data_dict):
            try:
                # Convert string to dictionary
                dummy_value = eval(j)
                
                # Process dictionary values
                for key in dummy_value:
                    while len(dummy_value[key]) >= 2:
                        dummy_value[key].pop(0)
                
                # Format dictionary
                formatted = dictionary_formatting(dummy_value)
                print(formatted)
                # Verify and store result
                verification_result = verification(formatted) if formatted else None
                
                yield verification_result
                
            except Exception as e:
                print(f"Error processing dictionary {j}: {e}")

        
# for j in process_data("Generate data for smart phones"):
#     print(j)