File size: 9,275 Bytes
b487c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac812b9
b487c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac812b9
 
 
 
 
 
 
 
b487c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b586d4
 
 
 
 
 
 
 
 
 
 
eceb8f1
3b586d4
 
 
 
 
b487c0e
3b586d4
 
 
 
 
 
 
 
b487c0e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import streamlit as st
# import wikipedia
from streamlit_lottie import st_lottie 
import regex as re
from streamlit_js_eval import streamlit_js_eval
# from common.utils import *
from data_collector import *
# from langchain_community.llms import Ollama

# from langchain_community.llms import Ollama
import pandas as pd
import json
st.set_page_config(layout="wide")
screen_width = streamlit_js_eval(label="screen.width",js_expressions='screen.width')
screen_height = streamlit_js_eval(label="screen.height",js_expressions='screen.height')


condition_capture = st.session_state
if 'schema' not in condition_capture:
    condition_capture['schema'] = {}
if 'prompt' not in condition_capture:
    condition_capture['prompt'] = ""
if  "count" not in condition_capture:
    condition_capture['count'] = 0
if "prev_schema" not in condition_capture:
    condition_capture['prev_schema'] = {}
if "textual_value" not in condition_capture:
    condition_capture['textual_value'] = {}
textual_value=None



schema=condition_capture['schema']




column1,column2 = st.columns(2)
with column2:



    if len(condition_capture['schema'])!=0 and len(condition_capture['textual_value'])==0:
        # condition_capture['prev_schema'] = condition_capture['schema']
        condition_capture['textual_value']=relevent_value(str(condition_capture['schema']).lower(),50)
    if len(condition_capture['schema'])!=0:
        html_page = condition_capture['textual_value'][1]
        textual_value = condition_capture['textual_value'][0]
        st.write("<br>",unsafe_allow_html=True)
        
        with st.container(border=True,height=int(screen_height/2.3)):
            st.header("Wikipedia insights")
            updated_schema = st.button("Start processing")
            selector=st.empty()
            start_page=my_bar = st.progress(0, text="Press start processing .")
            write =st.empty()
            
            
            
            
                
# )
            
            
                    


        

    
with column1:
    
    if str(schema)!=str({}):
        tabs = st.tabs(["Schema","Data Generation"])
        with tabs[0]:
            if str(schema)!=str({}):

                schema_column1,schema_column2 = st.columns(2)
                with schema_column1:
                        edited_df = st.data_editor([str(i) for index,i in enumerate(schema)],hide_index=True,use_container_width=True,num_rows='dynamic',height=int(screen_height/3))
                        
                with schema_column2:
                    number = st.number_input("Number of rows",min_value=1,max_value=1000,value=10)
                    if number!=condition_capture['count'] and updated_schema:
                        condition_capture['count'] = number
                    
                    
                    with open("/home/user/app/animation/edit_file.json") as animate:
                        url_json=json.load(animate)
                    st_lottie(url_json,height = int(screen_height/3))
                   

        with tabs[1]:
            with open("/home/user/app/animation/no data animation.json") as animate:
                url_json=json.load(animate)
            dataframe=st.empty()
            
            if condition_capture['count']==0:
                st_lottie(url_json,height = int(screen_height/3))
                
            else:
                smart_append=[]
                if condition_capture['prev_schema'] != condition_capture['schema']:
                    condition_capture['prev_schema'] = condition_capture['schema']
                    condition_capture['current_append']={}
                    
                    for text_indexing,store in enumerate(actual_value(textual_value,schema)):
                        dummy_value =dictionary_formatting(store)
                        for keys in dummy_value:
                            while len(dummy_value[keys])>=2:
                                dummy_value[keys].pop(0)
                        dummy_value = dictionary_formatting(dummy_value)

                        if dummy_value != None:
                            
                            
                            smart_append.append(dummy_value)
                            print(dummy_value)
                            for keys in dummy_value:
                                if keys not in condition_capture['current_append']:
                                    condition_capture['current_append'][str(keys)]=[]
                                condition_capture['current_append'][str(keys)].append(str([i for i in dummy_value[keys]]))
                            dataframe.dataframe(condition_capture['current_append'])
                            

                        if len(condition_capture['current_append'][[i for i in condition_capture['current_append']][-1]])>=condition_capture['count']:
                            start_page.progress(100, text="Operation completed.")
                            
                            break
                        else:
                            
                            start_page.progress((text_indexing + 1)*(100//condition_capture['count']), text="Operation in progress. Please wait.")
                        write.write(html_page[[i for i in html_page][text_indexing]],unsafe_allow_html=True)

                            # print(dummy_value)
                            # if smart_check(dummy_value)!=True:
                            #     smart_value=verification(dummy_value)
                            # if statement(condition_capture['schema'],smart_value):
                            #     st.dataframe(smart_value)
                condition_capture['current_append']={}
                if len(smart_append)==0:
                    
                    ranger=len(condition_capture['current_append'][[i for i in condition_capture['current_append']][0]])
                    for indexing in range(ranger):
                        working_dict = {}
                        for j in condition_capture['current_append']:
                        
                            working_dict[j]=condition_capture['current_append'][j][indexing][0]
                        smart_append.append(working_dict)
                smart_movement =   sorting(smart_append)
                
                for keys in smart_movement:
                    value=eval(keys)
                    for keys in value:
                        if keys not in condition_capture['current_append']:
                            condition_capture['current_append'][str(keys)]=[]
                        condition_capture['current_append'][str(keys)].append([str(i) for i in value[keys]])
                dataframe.dataframe(condition_capture['current_append'])
                for indexing,j in enumerate(smart_movement):
                    try:
                        # Convert string to dictionary
                        dummy_value = eval(j)
                        
                        # Process dictionary values
                        for key in dummy_value:
                            while len(dummy_value[key]) >= 2:
                                dummy_value[key].pop(0)
                        
                        # Format dictionary
                        formatted = dictionary_formatting(dummy_value)
                        print(formatted)
                        # Verify and store result
                        verification_result = verification(formatted) if formatted else None
                        for j in verification_result:
                            if j in condition_capture['current_append']:
                                condition_capture['current_append'][j][indexing]=[str(i) for i in verification_result[j]]
                        dataframe.dataframe(condition_capture['current_append'])
                        
                    except:
                        pass

if len(condition_capture['schema'])==0:
    st.markdown(
        """
        <div style="text-align: center; font-size: 50px; font-weight: bold; margin-top: 20px;">
            Generate high-quality, realistic data effortlessly.
        </div>
        """,
        unsafe_allow_html=True
    )
    newline_column1,newline_column2 = st.columns(2)
    with newline_column2:
        with open("/home/user/app/animation/Data_rocket.json") as animate:
            url_json=json.load(animate)
        st_lottie(url_json,height = int(screen_height/4))
    with newline_column1:
        


        # Instructions for the user
        st.markdown("""
        ### How it Works:
        - **Step 1:** Enter a prompt to generate data.
        - **step 2:** Select the number of rows you want to generate and press start processing.
        - **Step 3:** AI will use Wikipedia insights to create realistic outputs.
        - **Key Feature:** Less hallucination, more accurate data.
        """)
  
prompt = st.text_input(label="Please use prompt to generate data",value=condition_capture['prompt'])
if prompt != str(condition_capture['prompt']):
    
    condition_capture['prompt'] = prompt
    schema = schema_generator(prompt)
    condition_capture['schema'] = schema
    condition_capture['current_append']={}
    
    st.rerun()