import gradio as gr from langchain import PromptTemplate, LLMChain from langchain import HuggingFaceHub import os from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") repo_id = "tiiuae/falcon-7b-instruct" llm = HuggingFaceHub(huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN, repo_id=repo_id, model_kwargs={"temperature":0.7, "max_new_tokens":700}) template = """ You are a helpful AI assistant and provide the answer for the question asked politely. {question} Answer: Let's think step by step. """ prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=llm) # Define the function that will be used in Gradio def generate_answer(question): answer = llm_chain.run(question) return answer # Create a Gradio interface iface = gr.Interface( fn=generate_answer, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Textbox(), title="VSP Bot", description="Created by VSP", ) # Launch the Gradio interface iface.launch()