import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from einops.layers.torch import Rearrange class GroupNorm(nn.Module): def __init__(self, in_channels: int, num_groups: int = 32): super(GroupNorm, self).__init__() self.gn = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.gn(x) class AdaLayerNorm(nn.Module): def __init__(self, channels: int, cond_channels: int = 0, return_scale_shift: bool = True): super(AdaLayerNorm, self).__init__() self.norm = nn.LayerNorm(channels) self.return_scale_shift = return_scale_shift if cond_channels != 0: if return_scale_shift: self.proj = nn.Linear(cond_channels, channels * 3, bias=False) else: self.proj = nn.Linear(cond_channels, channels * 2, bias=False) nn.init.xavier_uniform_(self.proj.weight) def expand_dims(self, tensor: torch.Tensor, dims: list[int]) -> torch.Tensor: for dim in dims: tensor = tensor.unsqueeze(dim) return tensor def forward(self, x: torch.Tensor, cond: torch.Tensor | None = None) -> torch.Tensor: x = self.norm(x) if cond is None: return x dims = list(range(1, len(x.shape) - 1)) if self.return_scale_shift: gamma, beta, sigma = self.proj(cond).chunk(3, dim=-1) gamma, beta, sigma = [self.expand_dims(t, dims) for t in (gamma, beta, sigma)] return x * (1 + gamma) + beta, sigma else: gamma, beta = self.proj(cond).chunk(2, dim=-1) gamma, beta = [self.expand_dims(t, dims) for t in (gamma, beta)] return x * (1 + gamma) + beta class SinusoidalPositionalEmbedding(nn.Module): def __init__(self, emb_dim: int = 256): super(SinusoidalPositionalEmbedding, self).__init__() self.channels = emb_dim def forward(self, t: torch.Tensor) -> torch.Tensor: inv_freq = 1.0 / ( 10000 ** (torch.arange(0, self.channels, 2, device=t.device).float() / self.channels) ) pos_enc_a = torch.sin(t.repeat(1, self.channels // 2) * inv_freq) pos_enc_b = torch.cos(t.repeat(1, self.channels // 2) * inv_freq) pos_enc = torch.cat([pos_enc_a, pos_enc_b], dim=-1) return pos_enc class GatedConv2d(nn.Module): def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3, padding: int = 1, bias: bool = False): super(GatedConv2d, self).__init__() self.gate_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.feature_conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias) def forward(self, x: torch.Tensor) -> torch.Tensor: gate = torch.sigmoid(self.gate_conv(x)) feature = F.silu(self.feature_conv(x)) return gate * feature class ResGatedBlock(nn.Module): def __init__(self, in_channels: int, out_channels: int, mid_channels: int | None = None, num_groups: int = 32, residual: bool = True, emb_channels: int | None = None, gated_conv: bool = False): super().__init__() self.residual = residual self.emb_channels = emb_channels if not mid_channels: mid_channels = out_channels if gated_conv: conv2d = GatedConv2d else: conv2d = nn.Conv2d self.conv1 = conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False) self.norm1 = GroupNorm(mid_channels, num_groups=num_groups) self.nonlienrity = nn.SiLU() if emb_channels: self.emb_proj = nn.Linear(emb_channels, mid_channels) self.conv2 = conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False) self.norm2 = GroupNorm(out_channels, num_groups=num_groups) if in_channels != out_channels: self.skip = conv2d(in_channels, out_channels, kernel_size=1, padding=0) def double_conv(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: x = self.conv1(x) x = self.norm1(x) x = self.nonlienrity(x) if emb is not None and self.emb_channels is not None: x = x + self.emb_proj(emb)[:,:,None,None] x = self.conv2(x) return self.norm2(x) def forward(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: if self.residual: if hasattr(self, 'skip'): return F.silu(self.skip(x) + self.double_conv(x, emb)) return F.silu(x + self.double_conv(x, emb)) else: return self.double_conv(x, emb) class Downsample(nn.Module): def __init__(self, in_channels: int, out_channels: int, use_conv: bool=True): super().__init__() self.use_conv = use_conv if use_conv: self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=0) else: assert in_channels == out_channels self.conv = nn.AvgPool2d(kernel_size=2, stride=2) def forward(self, x: torch.Tensor) -> torch.Tensor: pad = (0, 1, 0, 1) hidden_states = F.pad(x, pad, mode="constant", value=0) return self.conv(hidden_states) if self.use_conv else self.conv(x) class Upsample(nn.Module): def __init__(self, in_channels: int, out_channels: int, use_conv: bool=True): super().__init__() self.use_conv = use_conv if use_conv: self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.interpolate(x, scale_factor = (2, 2) if x.dim() == 4 else (1, 2, 2), mode='nearest') return self.conv(x) if self.use_conv else x class FeedForward(nn.Module): def __init__(self, dim: int, emb_channels: int, expansion_rate: int = 4, dropout: float = 0.0): super().__init__() inner_dim = int(dim * expansion_rate) self.norm = AdaLayerNorm(dim, emb_channels) self.net = nn.Sequential( nn.Linear(dim, inner_dim), nn.SiLU(), nn.Dropout(dropout), nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) self.__init_weights() def __init_weights(self): nn.init.xavier_uniform_(self.net[0].weight) nn.init.xavier_uniform_(self.net[3].weight) def forward(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: x, sigma = self.norm(x, emb) return self.net(x) * sigma class Attention(nn.Module): def __init__( self, dim: int, emb_channels: int = 512, dim_head: int = 32, dropout: float = 0., window_size: int = 7 ): super().__init__() assert (dim % dim_head) == 0, 'dimension should be divisible by dimension per head' self.heads = dim // dim_head self.scale = dim_head ** -0.5 self.norm = AdaLayerNorm(dim, emb_channels) self.to_q = nn.Linear(dim, dim, bias = False) self.to_k = nn.Linear(dim, dim, bias = False) self.to_v = nn.Linear(dim, dim, bias = False) self.attend = nn.Sequential( nn.Softmax(dim = -1), nn.Dropout(dropout) ) self.to_out = nn.Sequential( nn.Linear(dim, dim, bias = False), nn.Dropout(dropout) ) self.rel_pos_bias = nn.Embedding((2 * window_size - 1) ** 2, self.heads) pos = torch.arange(window_size) grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij')) grid = rearrange(grid, 'c i j -> (i j) c') rel_pos = rearrange(grid, 'i ... -> i 1 ...') - rearrange(grid, 'j ... -> 1 j ...') rel_pos += window_size - 1 rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1) self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False) def forward(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: batch, height, width, window_height, window_width, _, device, h = *x.shape, x.device, self.heads x, sigma = self.norm(x, emb) x = rearrange(x, 'b x y w1 w2 d -> (b x y) (w1 w2) d') q = self.to_q(x) k = self.to_k(x) v = self.to_v(x) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # split heads q = q * self.scale sim = torch.einsum('b h i d, b h j d -> b h i j', q, k) # sim bias = self.rel_pos_bias(self.rel_pos_indices) sim = sim + rearrange(bias, 'i j h -> h i j')# add positional bias attn = self.attend(sim) # attention out = torch.einsum('b h i j, b h j d -> b h i d', attn, v) # aggregate out = rearrange(out, 'b h (w1 w2) d -> b w1 w2 (h d)', w1 = window_height, w2 = window_width) # merge heads out = self.to_out(out) # combine heads out return rearrange(out, '(b x y) ... -> b x y ...', x = height, y = width) * sigma class MaxViTBlock(nn.Module): def __init__( self, channels: int, emb_channels: int = 512, heads: int = 1, window_size: int = 8, window_attn: bool = True, grid_attn: bool = True, expansion_rate: int = 4, dropout: float = 0.0, ): super(MaxViTBlock, self).__init__() dim_head = channels // heads layer_dim = dim_head * heads w = window_size self.window_attn = window_attn self.grid_attn = grid_attn if window_attn: self.wind_rearrange_forward = Rearrange('b d (x w1) (y w2) -> b x y w1 w2 d', w1 = w, w2 = w) # block-like attention self.wind_attn = Attention( dim = layer_dim, emb_channels = emb_channels, dim_head = dim_head, dropout = dropout, window_size = w ) self.wind_ff = FeedForward(dim = layer_dim, emb_channels = emb_channels, expansion_rate = expansion_rate, dropout = dropout) self.wind_rearrange_backward = Rearrange('b x y w1 w2 d -> b d (x w1) (y w2)') if grid_attn: self.grid_rearrange_forward = Rearrange('b d (w1 x) (w2 y) -> b x y w1 w2 d', w1 = w, w2 = w) # grid-like attention self.grid_attn = Attention( dim = layer_dim, emb_channels = emb_channels, dim_head = dim_head, dropout = dropout, window_size = w ) self.grid_ff = FeedForward(dim = layer_dim, emb_channels = emb_channels, expansion_rate = expansion_rate, dropout = dropout) self.grid_rearrange_backward = Rearrange('b x y w1 w2 d -> b d (w1 x) (w2 y)') def forward(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: if self.window_attn: x = self.wind_rearrange_forward(x) x = x + self.wind_attn(x, emb = emb) x = x + self.wind_ff(x, emb = emb) x = self.wind_rearrange_backward(x) if self.grid_attn: x = self.grid_rearrange_forward(x) x = x + self.grid_attn(x, emb = emb) x = x + self.grid_ff(x, emb = emb) x = self.grid_rearrange_backward(x) return x