|
import torch |
|
import torch.nn as nn |
|
|
|
import torchvision.models as models |
|
|
|
from modules.basic_layers import GroupNorm |
|
|
|
class Extractor(nn.Module): |
|
def __init__(self, channels: list[int], num_groups: int = 32, use_residual: bool = True): |
|
super().__init__() |
|
|
|
self.use_residual = use_residual |
|
|
|
self.layers = nn.ModuleList([ |
|
nn.Sequential( |
|
nn.Conv2d(in_channels=channels[i], out_channels=channels[i + 1], kernel_size=3, stride=2, padding=1), |
|
GroupNorm(channels[i + 1], num_groups = num_groups), |
|
nn.SiLU(), |
|
nn.Conv2d(in_channels=channels[i + 1], out_channels=channels[i + 1], kernel_size=3, stride=1, padding=1), |
|
GroupNorm(channels[i + 1], num_groups = num_groups), |
|
nn.SiLU() |
|
) for i in range(len(channels) - 1) |
|
]) |
|
if self.use_residual: |
|
self.residual = nn.ModuleList([ |
|
nn.Sequential( |
|
nn.Conv2d(in_channels=channels[i], out_channels=channels[i + 1], kernel_size=3, stride=2, padding=1), |
|
) for i in range(len(channels) - 1) |
|
]) |
|
|
|
def forward(self, x: torch.Tensor) -> list[torch.Tensor]: |
|
features = [] |
|
for residual, layer in zip(self.residual, self.layers): |
|
if self.use_residual: |
|
x = layer(x) + residual(x) |
|
else: |
|
x = layer(x) |
|
features.append(x) |
|
return features |
|
|
|
|
|
class ResNetExtractor(nn.Module): |
|
def __init__(self, pretrained: bool = True, layers_to_extract: list[str] = ["layer1", "layer2", "layer3"]): |
|
super(ResNetExtractor, self).__init__() |
|
|
|
resnet = models.resnet18(pretrained=pretrained) |
|
|
|
self.initial_layers = nn.Sequential( |
|
resnet.conv1, |
|
resnet.bn1, |
|
resnet.relu |
|
) |
|
|
|
self.layers = nn.ModuleDict({ |
|
"layer1": resnet.layer1, |
|
"layer2": resnet.layer2, |
|
"layer3": resnet.layer3, |
|
}) |
|
|
|
self.layers_to_extract = layers_to_extract |
|
|
|
def forward(self, x: torch.Tensor) -> list[torch.Tensor]: |
|
features = [] |
|
x = self.initial_layers(x) |
|
|
|
for name, layer in self.layers.items(): |
|
x = layer(x) |
|
if name in self.layers_to_extract: |
|
features.append(x) |
|
|
|
return features |
|
|
|
class VGGExtractor(nn.Module): |
|
def __init__(self, layers_to_extract: list[int] = [8, 15, 22, 29]): |
|
super(VGGExtractor, self).__init__() |
|
|
|
self.vgg = models.vgg16(pretrained=True).features |
|
self.layers_to_extract = layers_to_extract |
|
self.selected_layers = [self.vgg[i] for i in layers_to_extract] |
|
|
|
def forward(self, x: torch.Tensor) -> list[torch.Tensor]: |
|
features = [] |
|
for i, layer in enumerate(self.vgg): |
|
x = layer(x) |
|
if i in self.layers_to_extract: |
|
features.append(x) |
|
return features |
|
|