|
import gradio as gr |
|
|
|
from PIL import Image |
|
from torchvision.transforms import Compose, ToTensor, Resize, Normalize |
|
import numpy as np |
|
import imageio |
|
import tempfile |
|
|
|
from utils.utils import denorm |
|
from model.hub import MultiInputResShiftHub |
|
|
|
import torch |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model = MultiInputResShiftHub.from_pretrained("vfontech/Multiple-Input-Resshift-VFI") |
|
model.requires_grad_(False).to(device).eval() |
|
|
|
transform = Compose([ |
|
Resize((256, 448)), |
|
ToTensor(), |
|
Normalize(mean=[0.5]*3, std=[0.5]*3), |
|
]) |
|
|
|
def to_numpy(img_tensor): |
|
img_np = denorm(img_tensor, mean=[0.5]*3, std=[0.5]*3).squeeze().permute(1, 2, 0).cpu().numpy() |
|
img_np = np.clip(img_np, 0, 1) |
|
return (img_np * 255).astype(np.uint8) |
|
|
|
def interpolate(img0_pil, img2_pil, tau, num_samples): |
|
img0 = transform(img0_pil.convert("RGB")).unsqueeze(0).to(device) |
|
img2 = transform(img2_pil.convert("RGB")).unsqueeze(0).to(device) |
|
|
|
if num_samples == 1: |
|
|
|
img1 = model.reverse_process([img0, img2], tau) |
|
return Image.fromarray(to_numpy(img1)), None |
|
else: |
|
|
|
frames = [to_numpy(img0)] |
|
for t in np.linspace(0, 1, num_samples): |
|
img = model.reverse_process([img0, img2], float(t)) |
|
frames.append(to_numpy(img)) |
|
frames.append(to_numpy(img2)) |
|
|
|
temp_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name |
|
imageio.mimsave(temp_path, frames, fps=8) |
|
return None, temp_path |
|
|
|
demo = gr.Interface( |
|
fn=interpolate, |
|
inputs=[ |
|
gr.Image(type="pil", label="Initial Image (frame1)"), |
|
gr.Image(type="pil", label="Final Image (frame3)"), |
|
gr.Slider(0.0, 1.0, step=0.05, value=0.5, label="Tau Value (only if Num Samples = 1)"), |
|
gr.Slider(1, 15, step=1, value=1, label="Number of Samples"), |
|
], |
|
outputs=[ |
|
gr.Image(label="Interpolated Image (if num_samples = 1)"), |
|
gr.Video(label="Interpolation in video (if num_samples > 1)"), |
|
], |
|
title="Multi-Input ResShift Diffusion VFI", |
|
description=( |
|
"📄 [arXiv Paper](https://arxiv.org/pdf/2504.05402) • " |
|
"🤗 [Model](https://huggingface.co./vfontech/Multiple-Input-Resshift-VFI) • " |
|
"🧪 [Colab](https://colab.research.google.com/drive/1MGYycbNMW6Mxu5MUqw_RW_xxiVeHK5Aa#scrollTo=EKaYCioiP3tQ) • " |
|
"🌐 [GitHub](https://github.com/VicFonch/Multi-Input-Resshift-Diffusion-VFI)\n\n" |
|
"Video interpolation using Conditional Residual Diffusion.\n" |
|
"- All images are resized to 256x448.\n" |
|
"- If `Number of Samples` = 1, generates only one intermediate image with the given Tau value.\n" |
|
"- If `Number of Samples` > 1, ignores Tau and generates a sequence of interpolated images." |
|
), |
|
examples=[ |
|
["_data/example_images/frame1.png", "_data/example_images/frame3.png", 0.5], |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=12) |
|
demo.launch(max_threads=1) |