File size: 9,207 Bytes
587665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d220e82
 
587665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d220e82
 
587665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d220e82
 
587665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d220e82
587665f
 
 
 
 
 
d220e82
587665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d220e82
587665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
##################################################
#  RFR is implemented based on RAFT optical flow #
##################################################


import torch
import torch.nn as nn
import torch.nn.functional as F
from argparse import Namespace
import numpy as np

from .update import BasicUpdateBlock, SmallUpdateBlock
from .extractor import BasicEncoder, SmallEncoder
from .corr import CorrBlock
from .utils import bilinear_sampler, coords_grid, upflow8

device = 'cuda' if torch.cuda.is_available() else 'cpu'

try:
    autocast = torch.amp.autocast
except:
    # dummy autocast for PyTorch < 1.6
    class autocast:
        def __init__(self, enabled):
            pass
        def __enter__(self):
            pass
        def __exit__(self, *args):
            pass

def backwarp(img, flow):
    _, _, H, W = img.size()

    u = flow[:, 0, :, :]
    v = flow[:, 1, :, :]

    gridX, gridY = np.meshgrid(np.arange(W), np.arange(H))

    gridX = torch.tensor(gridX, requires_grad=False,).to(device)
    gridY = torch.tensor(gridY, requires_grad=False,).to(device)
    x = gridX.unsqueeze(0).expand_as(u).float() + u
    y = gridY.unsqueeze(0).expand_as(v).float() + v
    # range -1 to 1
    x = 2*(x/(W-1) - 0.5)
    y = 2*(y/(H-1) - 0.5)
    # stacking X and Y
    grid = torch.stack((x,y), dim=3)
    # Sample pixels using bilinear interpolation.
    imgOut = torch.nn.functional.grid_sample(img, grid, align_corners=True)

    return imgOut
class ErrorAttention(nn.Module):
    """A three-layer network for predicting mask"""
    def __init__(self, input, output):
        super(ErrorAttention, self).__init__()
        self.conv1 = nn.Conv2d(input, 32, 5, padding=2)
        self.conv2 = nn.Conv2d(32, 32, 3, padding=1)
        self.conv3 = nn.Conv2d(38, output, 3, padding=1)
        self.prelu1 = nn.PReLU()
        self.prelu2 = nn.PReLU()

    def forward(self, x1):
        x = self.prelu1(self.conv1(x1))
        x = self.prelu2(torch.cat([self.conv2(x), x1], dim=1)) 
        x = self.conv3(x)
        return x

class RFR(nn.Module):
    def __init__(self, args):
        super(RFR, self).__init__()
        self.attention2 = ErrorAttention(6, 1)
        self.hidden_dim = hdim = 128
        self.context_dim = cdim = 128
        args.corr_levels = 4
        args.corr_radius = 4
        args.dropout = 0
        self.args = args

        # feature network, context network, and update block
        self.fnet = BasicEncoder(output_dim=256, norm_fn='none', dropout=args.dropout)        
        # self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout)
        self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)
        
        

    def freeze_bn(self):
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()

    def initialize_flow(self, img):
        """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
        N, C, H, W = img.shape
        coords0 = coords_grid(N, H//8, W//8).to(img.device)
        coords1 = coords_grid(N, H//8, W//8).to(img.device)

        # optical flow computed as difference: flow = coords1 - coords0
        return coords0, coords1

    def upsample_flow(self, flow, mask):
        """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
        N, _, H, W = flow.shape
        mask = mask.view(N, 1, 9, 8, 8, H, W)
        mask = torch.softmax(mask, dim=2)

        up_flow = F.unfold(8 * flow, [3,3], padding=1)
        up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)

        up_flow = torch.sum(mask * up_flow, dim=2)
        up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
        return up_flow.reshape(N, 2, 8*H, 8*W)

    def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False):
        H, W = image1.size()[2:4]
        H8 = H // 8 * 8
        W8 = W // 8 * 8

        if flow_init is not None:
            flow_init_resize = F.interpolate(flow_init, size=(H8//8, W8//8), mode='nearest')

            flow_init_resize[:, :1] = flow_init_resize[:, :1].clone() * (W8 // 8 *1.0) / flow_init.size()[3]
            flow_init_resize[:, 1:] = flow_init_resize[:, 1:].clone() * (H8 // 8*1.0) / flow_init.size()[2]
            
            if not hasattr(self.args, 'not_use_rfr_mask') or ( hasattr(self.args, 'not_use_rfr_mask') and (not self.args.not_use_rfr_mask)):
                im18 = F.interpolate(image1, size=(H8//8, W8//8), mode='bilinear')
                im28 = F.interpolate(image2, size=(H8//8, W8//8), mode='bilinear')
                
                warp21 = backwarp(im28, flow_init_resize)
                error21 = torch.sum(torch.abs(warp21 - im18), dim=1, keepdim=True)
                # print('errormin', error21.min(), error21.max())
                f12init = torch.exp(- self.attention2(torch.cat([im18, error21, flow_init_resize], dim=1)) ** 2) * flow_init_resize
        else:
            flow_init_resize = None
            flow_init = torch.zeros(image1.size()[0], 2, image1.size()[2]//8, image1.size()[3]//8).to(device)
            error21 = torch.zeros(image1.size()[0], 1, image1.size()[2]//8, image1.size()[3]//8).to(device)

            f12_init = flow_init
            # print('None inital flow!')
        
        image1 = F.interpolate(image1, size=(H8, W8), mode='bilinear')
        image2 = F.interpolate(image2, size=(H8, W8), mode='bilinear')

        f12s, f12, f12_init = self.forward_pred(image1, image2, iters, flow_init_resize, upsample, test_mode)
        
 
        if (hasattr(self.args, 'requires_sq_flow') and self.args.requires_sq_flow):
            for ii in range(len(f12s)):
                f12s[ii] = F.interpolate(f12s[ii], size=(H, W), mode='bilinear')
                f12s[ii][:, :1] = f12s[ii][:, :1].clone() / (1.0*W8) * W
                f12s[ii][:, 1:] = f12s[ii][:, 1:].clone() / (1.0*H8) * H
            if self.training:
                return f12s
            else:
                return [f12s[-1]], f12_init
        else:
            f12[:, :1] = f12[:, :1].clone() / (1.0*W8) * W
            f12[:, 1:] = f12[:, 1:].clone() / (1.0*H8) * H

            f12 = F.interpolate(f12, size=(H, W), mode='bilinear')
            # print('wo!!')
            return f12, f12_init, error21, 
            
    def forward_pred(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False):
        """ Estimate optical flow between pair of frames """


        image1 = image1.contiguous()
        image2 = image2.contiguous()

        hdim = self.hidden_dim
        cdim = self.context_dim

        # run the feature network
        with autocast(device, enabled=self.args.mixed_precision):
            fmap1, fmap2 = self.fnet([image1, image2])
        fmap1 = fmap1.float()
        fmap2 = fmap2.float()
        corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)

        # run the context network
        with autocast(device, enabled=self.args.mixed_precision):
            cnet = self.fnet(image1)
            net, inp = torch.split(cnet, [hdim, cdim], dim=1)
            net = torch.tanh(net)
            inp = torch.relu(inp)

        coords0, coords1 = self.initialize_flow(image1)

        if flow_init is not None:
            coords1 = coords1 + flow_init

        flow_predictions = []
        for itr in range(iters):
            coords1 = coords1.detach()
            if itr == 0:
                if flow_init is not None:
                    coords1 = coords1 + flow_init
            corr = corr_fn(coords1) # index correlation volume

            flow = coords1 - coords0
            with autocast(device, enabled=self.args.mixed_precision):
                net, up_mask, delta_flow = self.update_block(net, inp, corr, flow)

            # F(t+1) = F(t) + \Delta(t)
            coords1 = coords1 + delta_flow

            # upsample predictions
            if up_mask is None:
                flow_up = upflow8(coords1 - coords0)
            else:
                flow_up = self.upsample_flow(coords1 - coords0, up_mask)
            
            flow_predictions.append(flow_up)

        return flow_predictions, flow_up, flow_init
    
class RAFT(nn.Module):
    def __init__(self, path='./_pretrain_models/anime_interp_full.ckpt'):
        super().__init__()
        self.raft = RFR(Namespace(
            small=False,
            mixed_precision=False,
        ))
        if path is not None:
            sd = torch.load(path)['model_state_dict']
            self.raft.load_state_dict({
                k[len('module.flownet.'):]: v
                for k,v in sd.items()
                if k.startswith('module.flownet.')
            }, strict=False)
        return
    def forward(self, img0, img1, flow0=None, iters=12, return_more=False):
        if flow0 is not None:
            flow0 = flow0.flip(dims=(1,))
        out = self.raft(img0, img1, iters=iters, flow_init=flow0)
        return out[0].flip(dims=(1,))