File size: 13,482 Bytes
825e978 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
1. seprate attributes and data 2. remove the datatypes from the attributes C:\Users\Niall Dcunha\DatasetCreator\house price prediction\21754539_dataset # import os # import glob # import pandas as pd # import openai # from openai import OpenAI # from dotenv import load_dotenv # import ast # import re # def extract_dict_from_response(response: str) -> dict: # # Try extracting code block content containing the dictionary # match = re.search(r"```(?:python)?\s*(\{.*?\})\s*```", response, re.DOTALL) # if match: # mapping_str = match.group(1) # else: # # Try extracting dictionary directly if it's not in code block # match = re.search(r"(\{.*\})", response, re.DOTALL) # if not match: # raise ValueError("β Could not find a Python dictionary in the response.") # mapping_str = match.group(1) # try: # return ast.literal_eval(mapping_str) # except Exception as e: # print("β οΈ Failed to evaluate extracted dictionary string.") # print("String:", mapping_str) # raise e # # Load environment variables # load_dotenv() # client = OpenAI( # api_key=os.getenv("OPENAI_API_KEY"), # base_url=os.getenv("OPENAI_API_BASE") # Optional: for Azure or self-hosted # ) # def load_csv_files(folder_path): # csv_files = glob.glob(os.path.join(folder_path, "*.csv")) # dataframes = [] # column_sets = [] # valid_paths = [] # print("π₯ Reading CSV files...") # for file in csv_files: # try: # df = pd.read_csv(file) # dataframes.append(df) # column_sets.append(list(df.columns)) # valid_paths.append(file) # print(f"β Loaded: {os.path.basename(file)}") # except pd.errors.ParserError as e: # print(f"β Skipping file due to parsing error: {os.path.basename(file)}") # print(f" β³ {e}") # except Exception as e: # print(f"β οΈ Unexpected error with file {os.path.basename(file)}: {e}") # return dataframes, column_sets, valid_paths # def generate_mapping_prompt(column_sets): # prompt = ( # "You are a data scientist helping to merge multiple ML prediction datasets. " # "Each CSV may have different or similar column names. I need a unified mapping to standardize these datasets. " # "Also, please identify likely prediction label columns (e.g., price, quality, outcome).\n\n" # "Here are the column headers from each CSV:\n" # ) # for i, columns in enumerate(column_sets): # prompt += f"CSV {i+1}: {columns}\n" # prompt += ( # "\nPlease provide:\n" # "1. A Python dictionary mapping similar columns across these CSVs.\n" # "2. A list of columns most likely to represent prediction labels.\n\n" # "Format your response as:\n" # "```python\n" # "column_mapping = { ... }\n" # "label_columns = [ ... ]\n" # "```" # ) # return prompt # def get_column_mapping_from_openai(column_sets): # prompt = generate_mapping_prompt(column_sets) # response = client.chat.completions.create( # model="gpt-4", # messages=[ # {"role": "system", "content": "You are a helpful data scientist."}, # {"role": "user", "content": prompt} # ], # temperature=0.3 # ) # content = response.choices[0].message.content # print("\nπ© Received response from OpenAI.") # try: # # Try parsing both dictionary and label list from the response # column_mapping_match = re.search(r"column_mapping\s*=\s*(\{.*?\})", content, re.DOTALL) # label_columns_match = re.search(r"label_columns\s*=\s*(\[.*?\])", content, re.DOTALL) # if column_mapping_match: # mapping = ast.literal_eval(column_mapping_match.group(1)) # else: # raise ValueError("β Could not find `column_mapping` in the response.") # if label_columns_match: # label_columns = ast.literal_eval(label_columns_match.group(1)) # else: # label_columns = [] # except Exception as e: # print("β οΈ Error parsing OpenAI response:") # print(content) # raise e # return mapping, label_columns # def standardize_columns(df, mapping): # new_columns = {col: mapping.get(col, col) for col in df.columns} # return df.rename(columns=new_columns) # def merge_csvs(folder_path, output_file="merged_dataset.csv"): # dfs, column_sets, csv_paths = load_csv_files(folder_path) # if not dfs: # print("β No valid CSVs found to merge.") # return # print("\nπ§ Requesting column mapping from OpenAI...") # mapping, label_columns = get_column_mapping_from_openai(column_sets) # print("\nπ Column Mapping:") # for k, v in mapping.items(): # print(f" '{k}' -> '{v}'") # print("\nπ·οΈ Suggested Label Columns:") # for label in label_columns: # print(f" - {label}") # standardized_dfs = [standardize_columns(df, mapping) for df in dfs] # merged_df = pd.concat(standardized_dfs, ignore_index=True, sort=False) # merged_df.to_csv(output_file, index=False) # print(f"\nβ Merged dataset saved as '{output_file}'") # if __name__ == "__main__": # folder_path = "house" import os import glob import pandas as pd import ast import re from itertools import combinations from rapidfuzz import fuzz, process from dotenv import load_dotenv from openai import OpenAI # Manual rename map to standardize some known variations manual_rename_map = { "review": "text", "text": "text", "NumBedrooms": "bedrooms", "HousePrice": "price", "TARGET(PRICE_IN_LACS)": "price", "SquareFootage": "area", "SQUARE_FT": "area", "sentiment": "label", "target": "label", "type": "label", "variety": "label", "class": "label", "HeartDisease": "label", "Heart Attack Risk (Binary)": "label", "Heart Attack Risk": "label" } def normalize(col): return re.sub(r'[^a-z0-9]', '', col.lower()) def apply_manual_renaming(df, rename_map): renamed = {} for col in df.columns: if col in rename_map: renamed[col] = rename_map[col] return df.rename(columns=renamed) def get_fuzzy_common_columns(cols_list, threshold=75): base = cols_list[0] common = set() for col in base: match_all = True for other in cols_list[1:]: match, score, _ = process.extractOne(col, other, scorer=fuzz.token_sort_ratio) if score < threshold: match_all = False break if match_all: common.add(col) return common def sortFiles(dfs): unique_dfs = [] seen = [] for i, df1 in enumerate(dfs): duplicate = False for j in seen: df2 = dfs[j] if df1.shape != df2.shape: continue if df1.reset_index(drop=True).equals(df2.reset_index(drop=True)): duplicate = True break if not duplicate: unique_dfs.append(df1) seen.append(i) return unique_dfs def load_csv_files(folder_path): csv_files = glob.glob(os.path.join(folder_path, "*.csv")) dfs = [] column_sets = [] paths = [] for file in csv_files: try: df = pd.read_csv(file) dfs.append(df) column_sets.append(list(df.columns)) paths.append(file) print(f"β Loaded: {os.path.basename(file)}") except Exception as e: print(f"β Failed to load {file}: {e}") return dfs, column_sets, paths def generate_mapping_prompt(column_sets): prompt = ( "You are a data scientist helping to merge multiple machine learning prediction datasets. " "Each CSV file may have different column names, even if they represent similar types of data. " "Your task is to identify and map these similar columns across datasets to a common, unified name. " "Columns with clearly similar features (e.g., 'Bedrooms' and 'BedroomsAbvGr') should be merged into one column with a relevant name like 'bedrooms'.\n\n" "Avoid keeping redundant or unique columns that do not have any logical counterpart in other datasets unless they are essential. " "The goal is not to maximize the number of columns or rows, but to create a clean, consistent dataset for training ML models.\n\n" "Examples:\n" "- Dataset1: 'Locality' -> Mumbai, Delhi\n" "- Dataset2: 'Places' -> Goa, Singapore\n" "β Merge both into a common column like 'location'.\n\n" "Please also identify likely label or target columns that are typically used for prediction (e.g., price, sentiment, outcome, quality).\n\n" ) for i, cols in enumerate(column_sets): prompt += f"CSV {i+1}: {cols}\n" prompt += "\nPlease return:\n```python\ncolumn_mapping = { ... }\nlabel_columns = [ ... ]\n```" return prompt def get_column_mapping_from_openai(column_sets): load_dotenv() client = OpenAI( api_key=os.getenv("OPENAI_API_KEY"), base_url=os.getenv("OPENAI_API_BASE", "") ) prompt = generate_mapping_prompt(column_sets) response = client.chat.completions.create( model="gpt-4", messages=[ {"role": "system", "content": "You are a helpful data scientist."}, {"role": "user", "content": prompt} ], temperature=0.3 ) content = response.choices[0].message.content try: column_mapping_match = re.search(r"column_mapping\s*=\s*(\{.*?\})", content, re.DOTALL) label_columns_match = re.search(r"label_columns\s*=\s*(\[.*?\])", content, re.DOTALL) column_mapping = ast.literal_eval(column_mapping_match.group(1)) if column_mapping_match else {} label_columns = ast.literal_eval(label_columns_match.group(1)) if label_columns_match else [] except Exception as e: print("β οΈ Error parsing OpenAI response:") print(content) raise e return column_mapping, label_columns def clean_and_merge(folder, query=None, use_ai=True): os.makedirs("./final", exist_ok=True) dfs, column_sets, csv_paths = load_csv_files(folder) if not dfs: print("No valid CSVs found.") return dfs = sortFiles(dfs) dfs = [apply_manual_renaming(df, manual_rename_map) for df in dfs] if use_ai: try: column_mapping, label_columns = get_column_mapping_from_openai(column_sets) dfs = [df.rename(columns={col: column_mapping.get(col, col) for col in df.columns}) for df in dfs] except Exception as e: print("Falling back to fuzzy matching due to OpenAI error:", e) use_ai = False if not use_ai: # Normalize columns for fuzzy match fallback normalized_cols = [] for df in dfs: normalized_cols.append({normalize(col) for col in df.columns}) # Get best combination with fuzzy common columns max_common = set() best_combo = [] for i in range(2, len(dfs)+1): for combo in combinations(range(len(dfs)), i): selected = [normalized_cols[j] for j in combo] fuzzy_common = get_fuzzy_common_columns(selected) if len(fuzzy_common) >= len(max_common): max_common = fuzzy_common best_combo = combo # Harmonize and align aligned_dfs = [] for idx in best_combo: df = dfs[idx] col_map = {} for std_col in max_common: match, _, _ = process.extractOne(std_col, [normalize(col) for col in df.columns]) for col in df.columns: if normalize(col) == match: col_map[col] = std_col break df_subset = df[list(col_map.keys())].rename(columns=col_map) aligned_dfs.append(df_subset) combined_df = pd.concat(aligned_dfs, ignore_index=True) else: combined_df = pd.concat(dfs, ignore_index=True) # Label assignment fallback for i, df in enumerate(dfs): if 'label' not in df.columns: name = os.path.basename(csv_paths[i]).split(".")[0].lower() name_cleaned = name if query: words = set(re.sub(r'[^a-z]', ' ', query.lower()).split()) for word in words: name_cleaned = name_cleaned.replace(word, "") df['label'] = name_cleaned # Decide best final file largest_df = max(dfs, key=lambda df: len(df)) flag = False if len(largest_df) > len(combined_df) and len(largest_df.columns) > 2: flag = True elif len(combined_df) > len(largest_df) and (len(largest_df.columns) - len(combined_df.columns)) > 3 and len(largest_df.columns) < 7: flag = True output_file = f"./final/{query or os.path.basename(folder)}.csv" if flag: largest_df.to_csv(output_file, index=False) print(f"β οΈ Saved fallback single file due to poor merge: {output_file}") else: combined_df.to_csv(output_file, index=False) print(f"β Saved merged file: {output_file}") # Example usage: clean_and_merge("house", query="house", use_ai=True) # merge_csvs(folder_path) |