cyberosa
commited on
Commit
·
dc98cf9
1
Parent(s):
ba84b53
updating weekly data
Browse files- app.py +7 -1
- tabs/trader_plots.py +192 -0
app.py
CHANGED
@@ -12,12 +12,12 @@ from scripts.metrics import (
|
|
12 |
)
|
13 |
from tabs.trader_plots import (
|
14 |
plot_trader_metrics_by_market_creator,
|
15 |
-
plot_trader_metrics_by_trader_type,
|
16 |
default_trader_metric,
|
17 |
trader_metric_choices,
|
18 |
get_metrics_text,
|
19 |
plot_winning_metric_per_trader,
|
20 |
get_interpretation_text,
|
|
|
21 |
)
|
22 |
|
23 |
from tabs.market_plots import (
|
@@ -157,6 +157,12 @@ with demo:
|
|
157 |
inputs=trader_details_selector,
|
158 |
outputs=trader_markets_plot,
|
159 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
with gr.TabItem("📉Closed Markets Kullback–Leibler divergence"):
|
162 |
with gr.Row():
|
|
|
12 |
)
|
13 |
from tabs.trader_plots import (
|
14 |
plot_trader_metrics_by_market_creator,
|
|
|
15 |
default_trader_metric,
|
16 |
trader_metric_choices,
|
17 |
get_metrics_text,
|
18 |
plot_winning_metric_per_trader,
|
19 |
get_interpretation_text,
|
20 |
+
plot_median_roi_by_creation_date,
|
21 |
)
|
22 |
|
23 |
from tabs.market_plots import (
|
|
|
157 |
inputs=trader_details_selector,
|
158 |
outputs=trader_markets_plot,
|
159 |
)
|
160 |
+
# with gr.Row():
|
161 |
+
# gr.Markdown("# Daily Median ROI by market creator")
|
162 |
+
# with gr.Row():
|
163 |
+
# daily_median = plot_median_roi_by_creation_date(
|
164 |
+
# traders_df=trader_agents_data
|
165 |
+
# )
|
166 |
|
167 |
with gr.TabItem("📉Closed Markets Kullback–Leibler divergence"):
|
168 |
with gr.Row():
|
tabs/trader_plots.py
CHANGED
@@ -85,11 +85,203 @@ def plot_trader_metrics_by_market_creator(
|
|
85 |
)
|
86 |
fig.update_xaxes(tickformat="%b %d\n%Y")
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
return gr.Plot(
|
89 |
value=fig,
|
90 |
)
|
91 |
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def plot_trader_metrics_by_trader_type(metric_name: str, traders_df: pd.DataFrame):
|
94 |
"""Plots the weekly trader metrics."""
|
95 |
|
|
|
85 |
)
|
86 |
fig.update_xaxes(tickformat="%b %d\n%Y")
|
87 |
|
88 |
+
# # Add a vertical dashed line for the "multibet release"
|
89 |
+
# release_week = "Sep-29"
|
90 |
+
# # Extract unique categories to determine the position
|
91 |
+
# categories = traders_filtered["month_year_week"].unique()
|
92 |
+
|
93 |
+
# if release_week in categories:
|
94 |
+
# # Determine the numerical position of the release_week
|
95 |
+
# x_position = list(categories).index(release_week)
|
96 |
+
|
97 |
+
# # Add a vertical dashed line using add_shape
|
98 |
+
# fig.add_shape(
|
99 |
+
# type="line",
|
100 |
+
# x0=x_position,
|
101 |
+
# x1=x_position,
|
102 |
+
# y0=0,
|
103 |
+
# y1=1,
|
104 |
+
# xref="x",
|
105 |
+
# yref="paper",
|
106 |
+
# line=dict(color="darkred", dash="dash"),
|
107 |
+
# )
|
108 |
+
|
109 |
+
# # Add an annotation for the vertical line
|
110 |
+
# fig.add_annotation(
|
111 |
+
# x=x_position,
|
112 |
+
# y=0.8,
|
113 |
+
# xref="x",
|
114 |
+
# yref="paper",
|
115 |
+
# text="multibet release",
|
116 |
+
# showarrow=True,
|
117 |
+
# arrowhead=2,
|
118 |
+
# ax=0,
|
119 |
+
# ay=-40,
|
120 |
+
# font=dict(color="darkred"),
|
121 |
+
# bgcolor="gray",
|
122 |
+
# bordercolor="darkred",
|
123 |
+
# borderwidth=1,
|
124 |
+
# borderpad=4,
|
125 |
+
# align="center",
|
126 |
+
# )
|
127 |
+
# fig.add_vline(
|
128 |
+
# x=release_week, # The specific week for the release
|
129 |
+
# line_dash="dash", # Dashed line style
|
130 |
+
# line_color="darkred", # Color of the vertical line
|
131 |
+
# # annotation_text="multibet release",
|
132 |
+
# # annotation_text="multibet release", # Label for the vertical line
|
133 |
+
# # annotation_position="top", # Position of the annotation
|
134 |
+
# # annotation=dict(
|
135 |
+
# # bgcolor="white", # Background color for better readability
|
136 |
+
# # font_size=12,
|
137 |
+
# # font_color="red",
|
138 |
+
# # ),
|
139 |
+
# )
|
140 |
+
|
141 |
return gr.Plot(
|
142 |
value=fig,
|
143 |
)
|
144 |
|
145 |
|
146 |
+
def plot_median_roi_by_creation_date(traders_df: pd.DataFrame) -> gr.Plot:
|
147 |
+
traders_df["creation_date"] = traders_df["creation_timestamp"].dt.date
|
148 |
+
|
149 |
+
traders_all = traders_df.copy(deep=True)
|
150 |
+
traders_all["market_creator"] = "all"
|
151 |
+
|
152 |
+
# merging both dataframes
|
153 |
+
final_traders = pd.concat([traders_all, traders_df], ignore_index=True)
|
154 |
+
final_traders = final_traders.sort_values(by="creation_date", ascending=True)
|
155 |
+
roi_daily_metrics = (
|
156 |
+
final_traders.groupby(
|
157 |
+
["creation_date", "market_creator", "trader_address"], sort=False
|
158 |
+
)
|
159 |
+
.agg(
|
160 |
+
median_roi=("roi", "median"),
|
161 |
+
mean_roi=("roi", "mean"),
|
162 |
+
total_trades=("roi", "count"),
|
163 |
+
)
|
164 |
+
.reset_index()
|
165 |
+
)
|
166 |
+
# Create the scatter plot with facets for each market_creator
|
167 |
+
fig = px.scatter(
|
168 |
+
roi_daily_metrics,
|
169 |
+
x="creation_date",
|
170 |
+
y="median_roi",
|
171 |
+
facet_col="market_creator",
|
172 |
+
color="market_creator",
|
173 |
+
color_discrete_map={
|
174 |
+
"pearl": "purple",
|
175 |
+
"quickstart": "goldenrod",
|
176 |
+
"all": "darkgreen",
|
177 |
+
},
|
178 |
+
title="Median ROI Over Time by Market Creator",
|
179 |
+
labels={
|
180 |
+
"creation_date": "Creation Date",
|
181 |
+
"median_roi": "Median ROI (%)",
|
182 |
+
"market_creator": "Market Creator",
|
183 |
+
},
|
184 |
+
hover_data={
|
185 |
+
"creation_date": "|%B %d, %Y", # Custom date format in hover
|
186 |
+
"median_roi": True,
|
187 |
+
"mean_roi": True,
|
188 |
+
"total_trades": True,
|
189 |
+
},
|
190 |
+
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
|
191 |
+
# trendline=None, # Ensure no trendlines are added
|
192 |
+
)
|
193 |
+
|
194 |
+
# Customize the layout for better aesthetics
|
195 |
+
fig.update_layout(
|
196 |
+
template="plotly_white",
|
197 |
+
hovermode="closest",
|
198 |
+
showlegend=False, # Disable the legend as each facet has its own context
|
199 |
+
)
|
200 |
+
|
201 |
+
# Update each subplot's x-axis to share the same range
|
202 |
+
fig.update_xaxes(matches="x") # Link x-axes across facets
|
203 |
+
fig.update_yaxes(matches="y") # Link y-axes across facets
|
204 |
+
|
205 |
+
# Add a vertical dashed line in dark red at the specified date
|
206 |
+
vline_date = "2024-09-29"
|
207 |
+
vline_datetime = pd.to_datetime(vline_date, format="%Y-%m-%d")
|
208 |
+
fig.add_vline(
|
209 |
+
x=vline_datetime,
|
210 |
+
line_dash="dash",
|
211 |
+
line_color="darkred",
|
212 |
+
)
|
213 |
+
return gr.Plot(
|
214 |
+
value=fig,
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
import plotly.express as px
|
219 |
+
|
220 |
+
|
221 |
+
def create_median_roi_plot(roi_daily_metrics):
|
222 |
+
"""
|
223 |
+
Creates a Plotly scatter plot for median ROI over time, colored by market_creator.
|
224 |
+
|
225 |
+
Parameters:
|
226 |
+
- roi_daily_metrics (pd.DataFrame): Aggregated ROI metrics with columns:
|
227 |
+
['creation_date', 'market_creator', 'trader_address', 'median_roi', 'mean_roi', 'total_trades']
|
228 |
+
|
229 |
+
Returns:
|
230 |
+
- fig (plotly.graph_objs._figure.Figure): The Plotly figure object.
|
231 |
+
"""
|
232 |
+
# Ensure 'creation_date' is in datetime format
|
233 |
+
roi_daily_metrics["creation_date"] = pd.to_datetime(
|
234 |
+
roi_daily_metrics["creation_date"]
|
235 |
+
)
|
236 |
+
|
237 |
+
# Create the line plot with scatter markers
|
238 |
+
fig = px.line(
|
239 |
+
roi_daily_metrics,
|
240 |
+
x="creation_date",
|
241 |
+
y="median_roi",
|
242 |
+
color="market_creator",
|
243 |
+
markers=True, # Add markers to lines
|
244 |
+
title="Median ROI Over Time by Market Creator",
|
245 |
+
labels={
|
246 |
+
"creation_date": "Creation Date",
|
247 |
+
"median_roi": "Median ROI (%)",
|
248 |
+
"market_creator": "Market Creator",
|
249 |
+
},
|
250 |
+
hover_data={
|
251 |
+
"creation_date": "|%B %d, %Y", # Custom date format in hover
|
252 |
+
"median_roi": True,
|
253 |
+
"mean_roi": True,
|
254 |
+
"total_trades": True,
|
255 |
+
},
|
256 |
+
)
|
257 |
+
|
258 |
+
# Customize the layout for better aesthetics
|
259 |
+
fig.update_layout(
|
260 |
+
xaxis_title="Creation Date",
|
261 |
+
yaxis_title="Median ROI (%)",
|
262 |
+
legend_title="Market Creator",
|
263 |
+
template="plotly_white",
|
264 |
+
hovermode="x unified",
|
265 |
+
)
|
266 |
+
|
267 |
+
# Optional: Add vertical lines for specific events (e.g., "multibet release")
|
268 |
+
# Example:
|
269 |
+
# fig.add_vline(
|
270 |
+
# x=pd.to_datetime("2023-01-02"),
|
271 |
+
# line_dash="dash",
|
272 |
+
# line_color="red",
|
273 |
+
# annotation_text="Multibet Release",
|
274 |
+
# annotation_position="top left",
|
275 |
+
# annotation=dict(
|
276 |
+
# bgcolor="white",
|
277 |
+
# font_size=12,
|
278 |
+
# font_color="red"
|
279 |
+
# )
|
280 |
+
# )
|
281 |
+
|
282 |
+
return fig
|
283 |
+
|
284 |
+
|
285 |
def plot_trader_metrics_by_trader_type(metric_name: str, traders_df: pd.DataFrame):
|
286 |
"""Plots the weekly trader metrics."""
|
287 |
|