cyberosa
commited on
Commit
·
3ed8c7a
1
Parent(s):
6154c13
cleaning and correction on winning perc
Browse files- data/fpmms.parquet +0 -3
- data/markets_live_data.parquet +0 -3
- notebooks/winning_perc.ipynb +400 -0
- scripts/metrics.py +24 -73
data/fpmms.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:86135bb64013c54d5180c31fca13235943eb39571e760a695dac2aaa1e9cb1ce
|
3 |
-
size 436427
|
|
|
|
|
|
|
|
data/markets_live_data.parquet
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:69a3fffac1b1e11e818cdf3c709fd3006d6f93107df947693548a05bc66f337d
|
3 |
-
size 145777
|
|
|
|
|
|
|
|
notebooks/winning_perc.ipynb
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 2,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"all_trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 4,
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"all_trades[\"creation_date\"] = all_trades[\"creation_timestamp\"].dt.date"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 5,
|
33 |
+
"metadata": {},
|
34 |
+
"outputs": [
|
35 |
+
{
|
36 |
+
"name": "stderr",
|
37 |
+
"output_type": "stream",
|
38 |
+
"text": [
|
39 |
+
"/var/folders/gp/02mb1d514ng739czlxw1lhh00000gn/T/ipykernel_38171/1825242321.py:6: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n",
|
40 |
+
" all_trades[\"creation_timestamp\"].dt.to_period(\"W\").dt.strftime(\"%b-%d\")\n"
|
41 |
+
]
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"source": [
|
45 |
+
"all_trades = all_trades.sort_values(\n",
|
46 |
+
" by=\"creation_timestamp\", ascending=True\n",
|
47 |
+
")\n",
|
48 |
+
"\n",
|
49 |
+
"all_trades[\"month_year_week\"] = (\n",
|
50 |
+
" all_trades[\"creation_timestamp\"].dt.to_period(\"W\").dt.strftime(\"%b-%d\")\n",
|
51 |
+
")"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 6,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [],
|
59 |
+
"source": [
|
60 |
+
"def compute_winning_metric_per_trader_per_market_creator(\n",
|
61 |
+
" trader_address: str, week_traders_data: pd.DataFrame, market_creator: str = \"all\"\n",
|
62 |
+
") -> float:\n",
|
63 |
+
" assert \"market_creator\" in week_traders_data.columns\n",
|
64 |
+
" filtered_traders_data = week_traders_data.loc[\n",
|
65 |
+
" week_traders_data[\"trader_address\"] == trader_address\n",
|
66 |
+
" ]\n",
|
67 |
+
" if market_creator != \"all\": # compute only for the specific market creator\n",
|
68 |
+
" filtered_traders_data = filtered_traders_data.loc[\n",
|
69 |
+
" filtered_traders_data[\"market_creator\"] == market_creator\n",
|
70 |
+
" ]\n",
|
71 |
+
" if len(filtered_traders_data) == 0:\n",
|
72 |
+
" return None # No Data\n",
|
73 |
+
" winning_perc = (\n",
|
74 |
+
" filtered_traders_data[\"winning_trade\"].sum()\n",
|
75 |
+
" / filtered_traders_data[\"winning_trade\"].count()\n",
|
76 |
+
" * 100.0\n",
|
77 |
+
" )\n",
|
78 |
+
" return winning_perc"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 7,
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"def merge_winning_metrics_by_trader(\n",
|
88 |
+
" trader: str, weekly_data: pd.DataFrame, week: str\n",
|
89 |
+
") -> pd.DataFrame:\n",
|
90 |
+
" trader_metrics = []\n",
|
91 |
+
" # computation as specification 1 for all market creators\n",
|
92 |
+
" winning_metrics_all = {}\n",
|
93 |
+
" winning_metric_all = compute_winning_metric_per_trader_per_market_creator(\n",
|
94 |
+
" trader, weekly_data, market_creator=\"all\"\n",
|
95 |
+
" )\n",
|
96 |
+
" winning_metrics_all[\"winning_perc\"] = winning_metric_all\n",
|
97 |
+
" winning_metrics_all[\"month_year_week\"] = week\n",
|
98 |
+
" winning_metrics_all[\"market_creator\"] = \"all\"\n",
|
99 |
+
" trader_metrics.append(winning_metrics_all)\n",
|
100 |
+
" if week == \"Jul-21\":\n",
|
101 |
+
" print(f\"trader = {trader}, win_perc for all ={winning_metric_all}\")\n",
|
102 |
+
"\n",
|
103 |
+
" # computation as specification 1 for quickstart markets\n",
|
104 |
+
" winning_metrics_qs = {}\n",
|
105 |
+
" winning_metric = compute_winning_metric_per_trader_per_market_creator(\n",
|
106 |
+
" trader, weekly_data, market_creator=\"quickstart\"\n",
|
107 |
+
" )\n",
|
108 |
+
" if winning_metric:\n",
|
109 |
+
" winning_metrics_qs[\"winning_perc\"] = winning_metric\n",
|
110 |
+
" winning_metrics_qs[\"month_year_week\"] = week\n",
|
111 |
+
" winning_metrics_qs[\"market_creator\"] = \"quickstart\"\n",
|
112 |
+
" trader_metrics.append(winning_metrics_qs)\n",
|
113 |
+
"\n",
|
114 |
+
" # computation as specification 1 for pearl markets\n",
|
115 |
+
" winning_metrics_pearl = {}\n",
|
116 |
+
" winning_metric = compute_winning_metric_per_trader_per_market_creator(\n",
|
117 |
+
" trader, weekly_data, market_creator=\"pearl\"\n",
|
118 |
+
" )\n",
|
119 |
+
" if winning_metric:\n",
|
120 |
+
" winning_metrics_pearl[\"winning_perc\"] = winning_metric\n",
|
121 |
+
" winning_metrics_pearl[\"month_year_week\"] = week\n",
|
122 |
+
" winning_metrics_pearl[\"market_creator\"] = \"pearl\"\n",
|
123 |
+
" trader_metrics.append(winning_metrics_pearl)\n",
|
124 |
+
"\n",
|
125 |
+
" result = pd.DataFrame.from_dict(trader_metrics, orient=\"columns\")\n",
|
126 |
+
" # tqdm.write(f\"Total length of all winning metrics for this week = {len(result)}\")\n",
|
127 |
+
" return result"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 27,
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"def win_metrics_trader_level(weekly_data):\n",
|
137 |
+
" winning_trades = (\n",
|
138 |
+
" weekly_data.groupby([\"month_year_week\", \"market_creator\",\"trader_address\"], sort=False)[\n",
|
139 |
+
" \"winning_trade\"\n",
|
140 |
+
" ].sum()\n",
|
141 |
+
" / weekly_data.groupby([\"month_year_week\", \"market_creator\",\"trader_address\"], sort=False)[\n",
|
142 |
+
" \"winning_trade\"\n",
|
143 |
+
" ].count()\n",
|
144 |
+
" * 100\n",
|
145 |
+
" )\n",
|
146 |
+
" # winning_trades is a series, give it a dataframe\n",
|
147 |
+
" winning_trades = winning_trades.reset_index()\n",
|
148 |
+
" winning_trades.columns = winning_trades.columns.astype(str)\n",
|
149 |
+
" winning_trades.columns = [\"month_year_week\", \"market_creator\", \"trader_address\", \"winning_trade\"]\n",
|
150 |
+
" winning_trades.rename(columns={\"winning_trade\": \"winning_perc\"})\n",
|
151 |
+
" return winning_trades"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": 28,
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [
|
159 |
+
{
|
160 |
+
"data": {
|
161 |
+
"text/html": [
|
162 |
+
"<div>\n",
|
163 |
+
"<style scoped>\n",
|
164 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
165 |
+
" vertical-align: middle;\n",
|
166 |
+
" }\n",
|
167 |
+
"\n",
|
168 |
+
" .dataframe tbody tr th {\n",
|
169 |
+
" vertical-align: top;\n",
|
170 |
+
" }\n",
|
171 |
+
"\n",
|
172 |
+
" .dataframe thead th {\n",
|
173 |
+
" text-align: right;\n",
|
174 |
+
" }\n",
|
175 |
+
"</style>\n",
|
176 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
177 |
+
" <thead>\n",
|
178 |
+
" <tr style=\"text-align: right;\">\n",
|
179 |
+
" <th></th>\n",
|
180 |
+
" <th>month_year_week</th>\n",
|
181 |
+
" <th>market_creator</th>\n",
|
182 |
+
" <th>trader_address</th>\n",
|
183 |
+
" <th>winning_trade</th>\n",
|
184 |
+
" </tr>\n",
|
185 |
+
" </thead>\n",
|
186 |
+
" <tbody>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>0</th>\n",
|
189 |
+
" <td>Jul-21</td>\n",
|
190 |
+
" <td>all</td>\n",
|
191 |
+
" <td>0x95ecc70d9f4feb162ed9f41c4432d990c36c8f57</td>\n",
|
192 |
+
" <td>33.333333</td>\n",
|
193 |
+
" </tr>\n",
|
194 |
+
" <tr>\n",
|
195 |
+
" <th>1</th>\n",
|
196 |
+
" <td>Jul-21</td>\n",
|
197 |
+
" <td>quickstart</td>\n",
|
198 |
+
" <td>0x95ecc70d9f4feb162ed9f41c4432d990c36c8f57</td>\n",
|
199 |
+
" <td>33.333333</td>\n",
|
200 |
+
" </tr>\n",
|
201 |
+
" <tr>\n",
|
202 |
+
" <th>2</th>\n",
|
203 |
+
" <td>Jul-21</td>\n",
|
204 |
+
" <td>quickstart</td>\n",
|
205 |
+
" <td>0xf089874165be0377680683fd5187a058dea82683</td>\n",
|
206 |
+
" <td>100.000000</td>\n",
|
207 |
+
" </tr>\n",
|
208 |
+
" <tr>\n",
|
209 |
+
" <th>3</th>\n",
|
210 |
+
" <td>Jul-21</td>\n",
|
211 |
+
" <td>all</td>\n",
|
212 |
+
" <td>0xf089874165be0377680683fd5187a058dea82683</td>\n",
|
213 |
+
" <td>100.000000</td>\n",
|
214 |
+
" </tr>\n",
|
215 |
+
" <tr>\n",
|
216 |
+
" <th>4</th>\n",
|
217 |
+
" <td>Jul-21</td>\n",
|
218 |
+
" <td>quickstart</td>\n",
|
219 |
+
" <td>0x49f4e3d8edc85efda9b0a36d96e406a59b13fcc2</td>\n",
|
220 |
+
" <td>50.000000</td>\n",
|
221 |
+
" </tr>\n",
|
222 |
+
" </tbody>\n",
|
223 |
+
"</table>\n",
|
224 |
+
"</div>"
|
225 |
+
],
|
226 |
+
"text/plain": [
|
227 |
+
" month_year_week market_creator trader_address \\\n",
|
228 |
+
"0 Jul-21 all 0x95ecc70d9f4feb162ed9f41c4432d990c36c8f57 \n",
|
229 |
+
"1 Jul-21 quickstart 0x95ecc70d9f4feb162ed9f41c4432d990c36c8f57 \n",
|
230 |
+
"2 Jul-21 quickstart 0xf089874165be0377680683fd5187a058dea82683 \n",
|
231 |
+
"3 Jul-21 all 0xf089874165be0377680683fd5187a058dea82683 \n",
|
232 |
+
"4 Jul-21 quickstart 0x49f4e3d8edc85efda9b0a36d96e406a59b13fcc2 \n",
|
233 |
+
"\n",
|
234 |
+
" winning_trade \n",
|
235 |
+
"0 33.333333 \n",
|
236 |
+
"1 33.333333 \n",
|
237 |
+
"2 100.000000 \n",
|
238 |
+
"3 100.000000 \n",
|
239 |
+
"4 50.000000 "
|
240 |
+
]
|
241 |
+
},
|
242 |
+
"execution_count": 28,
|
243 |
+
"metadata": {},
|
244 |
+
"output_type": "execute_result"
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"source": [
|
248 |
+
"from tqdm import tqdm\n",
|
249 |
+
"\n",
|
250 |
+
"market_all = all_trades.copy(deep=True)\n",
|
251 |
+
"market_all[\"market_creator\"] = \"all\"\n",
|
252 |
+
"\n",
|
253 |
+
"# merging both dataframes\n",
|
254 |
+
"final_traders = pd.concat([market_all, all_trades], ignore_index=True)\n",
|
255 |
+
"final_traders = final_traders.sort_values(\n",
|
256 |
+
" by=\"creation_timestamp\", ascending=True)\n",
|
257 |
+
"\n",
|
258 |
+
"\n",
|
259 |
+
"winning_df = win_metrics_trader_level(final_traders)\n",
|
260 |
+
"winning_df.head()"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"execution_count": null,
|
266 |
+
"metadata": {},
|
267 |
+
"outputs": [],
|
268 |
+
"source": [
|
269 |
+
"winning_df = compute_winning_metrics_by_trader(all_trades)"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 29,
|
275 |
+
"metadata": {},
|
276 |
+
"outputs": [],
|
277 |
+
"source": [
|
278 |
+
"winning_pearl = winning_df.loc[winning_df[\"market_creator\"]==\"pearl\"]"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"cell_type": "code",
|
283 |
+
"execution_count": 30,
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [
|
286 |
+
{
|
287 |
+
"data": {
|
288 |
+
"text/html": [
|
289 |
+
"<div>\n",
|
290 |
+
"<style scoped>\n",
|
291 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
292 |
+
" vertical-align: middle;\n",
|
293 |
+
" }\n",
|
294 |
+
"\n",
|
295 |
+
" .dataframe tbody tr th {\n",
|
296 |
+
" vertical-align: top;\n",
|
297 |
+
" }\n",
|
298 |
+
"\n",
|
299 |
+
" .dataframe thead th {\n",
|
300 |
+
" text-align: right;\n",
|
301 |
+
" }\n",
|
302 |
+
"</style>\n",
|
303 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
304 |
+
" <thead>\n",
|
305 |
+
" <tr style=\"text-align: right;\">\n",
|
306 |
+
" <th></th>\n",
|
307 |
+
" <th>month_year_week</th>\n",
|
308 |
+
" <th>market_creator</th>\n",
|
309 |
+
" <th>trader_address</th>\n",
|
310 |
+
" <th>winning_trade</th>\n",
|
311 |
+
" </tr>\n",
|
312 |
+
" </thead>\n",
|
313 |
+
" <tbody>\n",
|
314 |
+
" <tr>\n",
|
315 |
+
" <th>7</th>\n",
|
316 |
+
" <td>Jul-21</td>\n",
|
317 |
+
" <td>pearl</td>\n",
|
318 |
+
" <td>0xe283e408c6017447da9fe092d52c386753699680</td>\n",
|
319 |
+
" <td>0.0</td>\n",
|
320 |
+
" </tr>\n",
|
321 |
+
" <tr>\n",
|
322 |
+
" <th>29</th>\n",
|
323 |
+
" <td>Jul-21</td>\n",
|
324 |
+
" <td>pearl</td>\n",
|
325 |
+
" <td>0x913dedfcfb335a49509b67acb3b1ab2612a5c0c9</td>\n",
|
326 |
+
" <td>100.0</td>\n",
|
327 |
+
" </tr>\n",
|
328 |
+
" <tr>\n",
|
329 |
+
" <th>30</th>\n",
|
330 |
+
" <td>Jul-21</td>\n",
|
331 |
+
" <td>pearl</td>\n",
|
332 |
+
" <td>0x1b9e28e7f817e1312636a485f31cca8a4be61fac</td>\n",
|
333 |
+
" <td>0.0</td>\n",
|
334 |
+
" </tr>\n",
|
335 |
+
" <tr>\n",
|
336 |
+
" <th>33</th>\n",
|
337 |
+
" <td>Jul-21</td>\n",
|
338 |
+
" <td>pearl</td>\n",
|
339 |
+
" <td>0xe0113a139f591efa8bf5e19308c7c27199682d77</td>\n",
|
340 |
+
" <td>0.0</td>\n",
|
341 |
+
" </tr>\n",
|
342 |
+
" <tr>\n",
|
343 |
+
" <th>37</th>\n",
|
344 |
+
" <td>Jul-21</td>\n",
|
345 |
+
" <td>pearl</td>\n",
|
346 |
+
" <td>0x66a022b113b41e08d90cfd9468b8b6565d6ea995</td>\n",
|
347 |
+
" <td>100.0</td>\n",
|
348 |
+
" </tr>\n",
|
349 |
+
" </tbody>\n",
|
350 |
+
"</table>\n",
|
351 |
+
"</div>"
|
352 |
+
],
|
353 |
+
"text/plain": [
|
354 |
+
" month_year_week market_creator trader_address \\\n",
|
355 |
+
"7 Jul-21 pearl 0xe283e408c6017447da9fe092d52c386753699680 \n",
|
356 |
+
"29 Jul-21 pearl 0x913dedfcfb335a49509b67acb3b1ab2612a5c0c9 \n",
|
357 |
+
"30 Jul-21 pearl 0x1b9e28e7f817e1312636a485f31cca8a4be61fac \n",
|
358 |
+
"33 Jul-21 pearl 0xe0113a139f591efa8bf5e19308c7c27199682d77 \n",
|
359 |
+
"37 Jul-21 pearl 0x66a022b113b41e08d90cfd9468b8b6565d6ea995 \n",
|
360 |
+
"\n",
|
361 |
+
" winning_trade \n",
|
362 |
+
"7 0.0 \n",
|
363 |
+
"29 100.0 \n",
|
364 |
+
"30 0.0 \n",
|
365 |
+
"33 0.0 \n",
|
366 |
+
"37 100.0 "
|
367 |
+
]
|
368 |
+
},
|
369 |
+
"execution_count": 30,
|
370 |
+
"metadata": {},
|
371 |
+
"output_type": "execute_result"
|
372 |
+
}
|
373 |
+
],
|
374 |
+
"source": [
|
375 |
+
"winning_pearl.head()"
|
376 |
+
]
|
377 |
+
}
|
378 |
+
],
|
379 |
+
"metadata": {
|
380 |
+
"kernelspec": {
|
381 |
+
"display_name": "hf_dashboards",
|
382 |
+
"language": "python",
|
383 |
+
"name": "python3"
|
384 |
+
},
|
385 |
+
"language_info": {
|
386 |
+
"codemirror_mode": {
|
387 |
+
"name": "ipython",
|
388 |
+
"version": 3
|
389 |
+
},
|
390 |
+
"file_extension": ".py",
|
391 |
+
"mimetype": "text/x-python",
|
392 |
+
"name": "python",
|
393 |
+
"nbconvert_exporter": "python",
|
394 |
+
"pygments_lexer": "ipython3",
|
395 |
+
"version": "3.12.2"
|
396 |
+
}
|
397 |
+
},
|
398 |
+
"nbformat": 4,
|
399 |
+
"nbformat_minor": 2
|
400 |
+
}
|
scripts/metrics.py
CHANGED
@@ -76,28 +76,6 @@ def compute_trader_metrics_by_market_creator(
|
|
76 |
return metrics
|
77 |
|
78 |
|
79 |
-
def compute_winning_metric_per_trader_per_market_creator(
|
80 |
-
trader_address: str, week_traders_data: pd.DataFrame, market_creator: str = "all"
|
81 |
-
) -> float:
|
82 |
-
assert "market_creator" in week_traders_data.columns
|
83 |
-
filtered_traders_data = week_traders_data.loc[
|
84 |
-
week_traders_data["trader_address"] == trader_address
|
85 |
-
]
|
86 |
-
if market_creator != "all": # compute only for the specific market creator
|
87 |
-
filtered_traders_data = filtered_traders_data.loc[
|
88 |
-
filtered_traders_data["market_creator"] == market_creator
|
89 |
-
]
|
90 |
-
if len(filtered_traders_data) == 0:
|
91 |
-
tqdm.write(f"No data. Skipping market creator {market_creator}")
|
92 |
-
return None # No Data
|
93 |
-
winning_perc = (
|
94 |
-
filtered_traders_data["winning_trade"].sum()
|
95 |
-
/ filtered_traders_data["winning_trade"].count()
|
96 |
-
* 100.0
|
97 |
-
)
|
98 |
-
return winning_perc
|
99 |
-
|
100 |
-
|
101 |
def merge_trader_metrics(
|
102 |
trader: str, weekly_data: pd.DataFrame, week: str
|
103 |
) -> pd.DataFrame:
|
@@ -165,45 +143,21 @@ def merge_trader_metrics_by_type(
|
|
165 |
return result
|
166 |
|
167 |
|
168 |
-
def
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
winning_metrics_all["winning_perc"] = winning_metric_all
|
178 |
-
winning_metrics_all["month_year_week"] = week
|
179 |
-
winning_metrics_all["market_creator"] = "all"
|
180 |
-
trader_metrics.append(winning_metrics_all)
|
181 |
-
|
182 |
-
# computation as specification 1 for quickstart markets
|
183 |
-
winning_metrics_qs = {}
|
184 |
-
winning_metric = compute_winning_metric_per_trader_per_market_creator(
|
185 |
-
trader, weekly_data, market_creator="quickstart"
|
186 |
-
)
|
187 |
-
if winning_metric:
|
188 |
-
winning_metrics_qs["winning_perc"] = winning_metric
|
189 |
-
winning_metrics_qs["month_year_week"] = week
|
190 |
-
winning_metrics_qs["market_creator"] = "quickstart"
|
191 |
-
trader_metrics.append(winning_metrics_qs)
|
192 |
-
|
193 |
-
# computation as specification 1 for pearl markets
|
194 |
-
winning_metrics_pearl = {}
|
195 |
-
winning_metric = compute_winning_metric_per_trader_per_market_creator(
|
196 |
-
trader, weekly_data, market_creator="pearl"
|
197 |
)
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
|
205 |
-
# tqdm.write(f"Total length of all winning metrics for this week = {len(result)}")
|
206 |
-
return result
|
207 |
|
208 |
|
209 |
def compute_weekly_metrics_by_market_creator(
|
@@ -248,16 +202,13 @@ def compute_winning_metrics_by_trader(
|
|
248 |
trader_agents_data: pd.DataFrame,
|
249 |
) -> pd.DataFrame:
|
250 |
"""Function to compute the winning metrics at the trader level per week and with different market creators"""
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
contents.append(merge_winning_metrics_by_trader(trader, weekly_data, week))
|
262 |
-
print("End computing all weekly winning metrics by trader")
|
263 |
-
return pd.concat(contents, ignore_index=True)
|
|
|
76 |
return metrics
|
77 |
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
def merge_trader_metrics(
|
80 |
trader: str, weekly_data: pd.DataFrame, week: str
|
81 |
) -> pd.DataFrame:
|
|
|
143 |
return result
|
144 |
|
145 |
|
146 |
+
def win_metrics_trader_level(weekly_data):
|
147 |
+
winning_trades = (
|
148 |
+
weekly_data.groupby(
|
149 |
+
["month_year_week", "market_creator", "trader_address"], sort=False
|
150 |
+
)["winning_trade"].sum()
|
151 |
+
/ weekly_data.groupby(
|
152 |
+
["month_year_week", "market_creator", "trader_address"], sort=False
|
153 |
+
)["winning_trade"].count()
|
154 |
+
* 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
)
|
156 |
+
# winning_trades is a series, give it a dataframe
|
157 |
+
winning_trades = winning_trades.reset_index()
|
158 |
+
winning_trades.columns = winning_trades.columns.astype(str)
|
159 |
+
winning_trades.rename(columns={"winning_trade": "winning_perc"}, inplace=True)
|
160 |
+
return winning_trades
|
|
|
|
|
|
|
|
|
161 |
|
162 |
|
163 |
def compute_weekly_metrics_by_market_creator(
|
|
|
202 |
trader_agents_data: pd.DataFrame,
|
203 |
) -> pd.DataFrame:
|
204 |
"""Function to compute the winning metrics at the trader level per week and with different market creators"""
|
205 |
+
market_all = trader_agents_data.copy(deep=True)
|
206 |
+
market_all["market_creator"] = "all"
|
207 |
+
|
208 |
+
# merging both dataframes
|
209 |
+
final_traders = pd.concat([market_all, trader_agents_data], ignore_index=True)
|
210 |
+
final_traders = final_traders.sort_values(by="creation_timestamp", ascending=True)
|
211 |
+
|
212 |
+
winning_df = win_metrics_trader_level(final_traders)
|
213 |
+
winning_df.head()
|
214 |
+
return winning_df
|
|
|
|
|
|