|
import pandas as pd |
|
from tqdm import tqdm |
|
|
|
DEFAULT_MECH_FEE = 0.01 |
|
|
|
|
|
def compute_metrics( |
|
trader_address: str, trader_data: pd.DataFrame, live_metrics: bool = False |
|
) -> dict: |
|
|
|
if len(trader_data) == 0: |
|
|
|
return {} |
|
|
|
agg_metrics = {} |
|
agg_metrics["trader_address"] = trader_address |
|
total_bet_amounts = trader_data.collateral_amount.sum() |
|
total_num_mech_calls = trader_data.num_mech_calls.sum() |
|
agg_metrics["bet_amount"] = total_bet_amounts |
|
agg_metrics["nr_mech_calls"] = total_num_mech_calls |
|
agg_metrics["staking"] = trader_data.iloc[0].staking |
|
agg_metrics["nr_trades"] = len(trader_data) |
|
if live_metrics: |
|
return agg_metrics |
|
total_net_earnings = trader_data.net_earnings.sum() |
|
agg_metrics["net_earnings"] = total_net_earnings |
|
agg_metrics["earnings"] = trader_data.earnings.sum() |
|
total_fee_amounts = trader_data.mech_fee_amount.sum() |
|
total_costs = ( |
|
total_bet_amounts |
|
+ total_fee_amounts |
|
+ (total_num_mech_calls * DEFAULT_MECH_FEE) |
|
) |
|
agg_metrics["roi"] = total_net_earnings / total_costs |
|
return agg_metrics |
|
|
|
|
|
def compute_trader_metrics_by_market_creator( |
|
trader_address: str, |
|
traders_data: pd.DataFrame, |
|
market_creator: str = "all", |
|
live_metrics: bool = False, |
|
) -> dict: |
|
"""This function computes for a specific time window (week or day) the different metrics: |
|
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades. |
|
The global roi of the trader agent by computing the individual net profit and the individual costs values |
|
achieved per market and dividing both. |
|
It is possible to filter by market creator: quickstart, pearl, all""" |
|
assert "market_creator" in traders_data.columns |
|
filtered_traders_data = traders_data.loc[ |
|
traders_data["trader_address"] == trader_address |
|
] |
|
if market_creator != "all": |
|
filtered_traders_data = filtered_traders_data.loc[ |
|
filtered_traders_data["market_creator"] == market_creator |
|
] |
|
if len(filtered_traders_data) == 0: |
|
|
|
return {} |
|
|
|
metrics = compute_metrics(trader_address, filtered_traders_data, live_metrics) |
|
return metrics |
|
|
|
|
|
def compute_trader_metrics_by_trader_family( |
|
trader_address: str, traders_data: pd.DataFrame, trader_family: str = "all" |
|
) -> dict: |
|
"""This function computes for a specific time window (week or day) the different metrics: |
|
roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades. |
|
The global roi of the trader agent by computing the individual net profit and the individual costs values |
|
achieved per market and dividing both. |
|
It is possible to filter by trader family: quickstart_agent, pearl_agent, non_agent, all |
|
""" |
|
assert "trader_family" in traders_data.columns |
|
filtered_traders_data = traders_data.loc[ |
|
traders_data["trader_address"] == trader_address |
|
] |
|
if trader_family != "all": |
|
filtered_traders_data = filtered_traders_data.loc[ |
|
filtered_traders_data["trader_family"] == trader_family |
|
] |
|
if len(filtered_traders_data) == 0: |
|
|
|
return {} |
|
|
|
metrics = compute_metrics(trader_address, filtered_traders_data) |
|
return metrics |
|
|
|
|
|
def merge_trader_weekly_metrics( |
|
trader: str, weekly_data: pd.DataFrame, week: str |
|
) -> pd.DataFrame: |
|
trader_metrics = [] |
|
|
|
weekly_metrics_all = compute_trader_metrics_by_market_creator( |
|
trader, weekly_data, market_creator="all" |
|
) |
|
weekly_metrics_all["month_year_week"] = week |
|
weekly_metrics_all["market_creator"] = "all" |
|
trader_metrics.append(weekly_metrics_all) |
|
|
|
|
|
weekly_metrics_qs = compute_trader_metrics_by_market_creator( |
|
trader, weekly_data, market_creator="quickstart" |
|
) |
|
if len(weekly_metrics_qs) > 0: |
|
weekly_metrics_qs["month_year_week"] = week |
|
weekly_metrics_qs["market_creator"] = "quickstart" |
|
trader_metrics.append(weekly_metrics_qs) |
|
|
|
weekly_metrics_pearl = compute_trader_metrics_by_market_creator( |
|
trader, weekly_data, market_creator="pearl" |
|
) |
|
if len(weekly_metrics_pearl) > 0: |
|
weekly_metrics_pearl["month_year_week"] = week |
|
weekly_metrics_pearl["market_creator"] = "pearl" |
|
trader_metrics.append(weekly_metrics_pearl) |
|
result = pd.DataFrame.from_dict(trader_metrics, orient="columns") |
|
return result |
|
|
|
|
|
def merge_trader_daily_metrics( |
|
trader: str, daily_data: pd.DataFrame, day: str, live_metrics: bool = False |
|
) -> pd.DataFrame: |
|
trader_metrics = [] |
|
|
|
daily_metrics_all = compute_trader_metrics_by_market_creator( |
|
trader, daily_data, market_creator="all", live_metrics=live_metrics |
|
) |
|
daily_metrics_all["creation_date"] = day |
|
|
|
daily_metrics_all["market_creator"] = "all" |
|
trader_metrics.append(daily_metrics_all) |
|
|
|
|
|
daily_metrics_qs = compute_trader_metrics_by_market_creator( |
|
trader, daily_data, market_creator="quickstart", live_metrics=live_metrics |
|
) |
|
if len(daily_metrics_qs) > 0: |
|
daily_metrics_qs["creation_date"] = day |
|
daily_metrics_qs["market_creator"] = "quickstart" |
|
trader_metrics.append(daily_metrics_qs) |
|
|
|
daily_metrics_pearl = compute_trader_metrics_by_market_creator( |
|
trader, daily_data, market_creator="pearl", live_metrics=live_metrics |
|
) |
|
if len(daily_metrics_pearl) > 0: |
|
daily_metrics_pearl["creation_date"] = day |
|
daily_metrics_pearl["market_creator"] = "pearl" |
|
trader_metrics.append(daily_metrics_pearl) |
|
result = pd.DataFrame.from_dict(trader_metrics, orient="columns") |
|
return result |
|
|
|
|
|
def win_metrics_trader_level(weekly_data): |
|
winning_trades = ( |
|
weekly_data.groupby( |
|
["month_year_week", "market_creator", "trader_address"], sort=False |
|
)["winning_trade"].sum() |
|
/ weekly_data.groupby( |
|
["month_year_week", "market_creator", "trader_address"], sort=False |
|
)["winning_trade"].count() |
|
* 100 |
|
) |
|
|
|
winning_trades = winning_trades.reset_index() |
|
winning_trades.columns = winning_trades.columns.astype(str) |
|
winning_trades.rename(columns={"winning_trade": "winning_perc"}, inplace=True) |
|
return winning_trades |
|
|
|
|
|
def compute_weekly_metrics_by_market_creator( |
|
trader_agents_data: pd.DataFrame, trader_filter: str = None |
|
) -> pd.DataFrame: |
|
"""Function to compute the metrics at the trader level per week |
|
and with different categories by market creator""" |
|
contents = [] |
|
all_weeks = list(trader_agents_data.month_year_week.unique()) |
|
for week in all_weeks: |
|
weekly_data = trader_agents_data.loc[ |
|
trader_agents_data["month_year_week"] == week |
|
] |
|
print(f"Computing weekly metrics for week ={week} by market creator") |
|
|
|
traders = list(weekly_data.trader_address.unique()) |
|
for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"): |
|
if trader_filter is None: |
|
contents.append(merge_trader_weekly_metrics(trader, weekly_data, week)) |
|
elif trader_filter == "agent": |
|
filtered_data = weekly_data.loc[weekly_data["staking"] != "non_agent"] |
|
contents.append( |
|
merge_trader_weekly_metrics(trader, filtered_data, week) |
|
) |
|
else: |
|
filtered_data = weekly_data.loc[weekly_data["staking"] == "non_agent"] |
|
contents.append( |
|
merge_trader_weekly_metrics(trader, filtered_data, week) |
|
) |
|
|
|
print("End computing all weekly metrics by market creator") |
|
return pd.concat(contents, ignore_index=True) |
|
|
|
|
|
def compute_daily_metrics_by_market_creator( |
|
trader_agents_data: pd.DataFrame, |
|
trader_filter: str = None, |
|
live_metrics: bool = False, |
|
) -> pd.DataFrame: |
|
"""Function to compute the metrics at the trader level per day |
|
and with different categories by market creator""" |
|
contents = [] |
|
|
|
all_days = list(trader_agents_data.creation_date.unique()) |
|
for day in all_days: |
|
daily_data = trader_agents_data.loc[trader_agents_data["creation_date"] == day] |
|
print(f"Computing daily metrics for {day}") |
|
|
|
traders = list(daily_data.trader_address.unique()) |
|
for trader in tqdm(traders, desc=f"Trader' daily metrics", unit="metrics"): |
|
if trader_filter is None: |
|
contents.append( |
|
merge_trader_daily_metrics(trader, daily_data, day, live_metrics) |
|
) |
|
elif trader_filter == "agentic": |
|
filtered_data = daily_data.loc[daily_data["staking"] != "non_agent"] |
|
contents.append( |
|
merge_trader_daily_metrics(trader, filtered_data, day, live_metrics) |
|
) |
|
else: |
|
filtered_data = daily_data.loc[daily_data["staking"] == "non_agent"] |
|
contents.append( |
|
merge_trader_daily_metrics(trader, filtered_data, day, live_metrics) |
|
) |
|
print("End computing all daily metrics by market creator") |
|
return pd.concat(contents, ignore_index=True) |
|
|
|
|
|
def compute_winning_metrics_by_trader( |
|
trader_agents_data: pd.DataFrame, trader_filter: str = None |
|
) -> pd.DataFrame: |
|
"""Function to compute the winning metrics at the trader level per week and with different market creators""" |
|
market_all = trader_agents_data.copy(deep=True) |
|
market_all["market_creator"] = "all" |
|
|
|
|
|
final_traders = pd.concat([market_all, trader_agents_data], ignore_index=True) |
|
final_traders = final_traders.sort_values(by="creation_timestamp", ascending=True) |
|
|
|
if trader_filter == "agentic": |
|
final_traders = final_traders.loc[final_traders["staking"] != "non_agent"] |
|
else: |
|
final_traders = final_traders.loc[final_traders["staking"] == "non_agent"] |
|
|
|
winning_df = win_metrics_trader_level(final_traders) |
|
winning_df.head() |
|
return winning_df |
|
|