File size: 8,122 Bytes
52d1750
 
 
12536a4
 
3f72b8c
 
577dd09
6298cbe
52d1750
3498a52
 
 
 
 
 
 
 
 
52d1750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f81ac63
330cbe3
52d1750
3f72b8c
52d1750
 
 
 
 
12536a4
 
3f72b8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e538d2
 
8704528
 
 
 
 
 
 
 
 
 
 
 
 
3035b84
8704528
 
 
 
 
3035b84
8704528
3035b84
 
 
8704528
 
 
 
 
 
 
 
 
6298cbe
 
 
8a73d91
6298cbe
 
 
 
8a73d91
8704528
 
 
 
 
 
 
 
 
3035b84
 
 
 
 
 
8704528
 
 
 
3498a52
8704528
 
3498a52
8704528
 
 
 
 
 
 
 
6298cbe
 
8704528
 
 
 
 
577dd09
 
 
 
 
 
 
 
 
 
 
 
 
 
3035b84
577dd09
 
 
 
 
3035b84
577dd09
3035b84
 
 
577dd09
 
 
 
 
 
 
 
 
 
3035b84
 
 
 
 
 
577dd09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import pandas as pd
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import matplotlib.pyplot as plt
import seaborn as sns
from tabs.daily_graphs import color_mapping
from datetime import datetime

color_mapping = [
    "darkviolet",
    "purple",
    "goldenrod",
    "darkgoldenrod",
    "green",
    "darkgreen",
]


def plot_kl_div_per_market(closed_markets: pd.DataFrame) -> gr.Plot:

    # adding the total
    all_markets = closed_markets.copy(deep=True)
    all_markets["market_creator"] = "all"

    # merging both dataframes
    final_markets = pd.concat([closed_markets, all_markets], ignore_index=True)
    final_markets = final_markets.sort_values(by="opening_datetime", ascending=True)

    fig = px.box(
        final_markets,
        x="month_year_week",
        y="kl_divergence",
        color="market_creator",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={"market_creator": ["pearl", "quickstart", "all"]},
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Markets closing Week",
        yaxis_title="Kullback–Leibler divergence",
        legend=dict(yanchor="top", y=0.5),
        width=800,  # Adjusted for better fit on laptop screens
        height=600,  # Adjusted for better fit on laptop screens
    )

    fig.update_xaxes(tickformat="%b %d\n%Y")

    return gr.Plot(
        value=fig,
    )


def plot_kl_div_with_off_by(closed_markets: pd.DataFrame) -> gr.Plot:
    # adding the total
    all_markets = closed_markets.copy(deep=True)
    all_markets["market_creator"] = "all"

    # merging both dataframes
    final_markets = pd.concat([closed_markets, all_markets], ignore_index=True)
    final_markets = final_markets.sort_values(by="opening_datetime", ascending=True)

    # Create the main figure and axis
    fig, ax1 = plt.subplots(figsize=(10, 6))

    # Create the boxplot using seaborn
    sns.boxplot(
        data=final_markets,
        x="month_year_week",
        y="kl_divergence",
        ax=ax1,
        hue="market_creator",
    )

    # Set labels and title for the main axis
    ax1.set_xlabel("Week")
    ax1.set_ylabel("KL Divergence")
    ax1.set_title("KL Divergence Boxplot with Off-by Percentage")

    # Create a secondary y-axis
    ax2 = ax1.twinx()

    # Plot the off_by_perc values on the secondary y-axis
    for i, week in enumerate(closed_markets["month_year_week"].unique()):
        off_by_perc = closed_markets[closed_markets["month_year_week"] == week][
            "off_by_perc"
        ]
        ax2.scatter([i] * len(off_by_perc), off_by_perc, color="red", alpha=0.01)

    # Set label for the secondary y-axis
    ax2.set_ylabel("Off-by Percentage")

    # Adjust the layout and display the plot
    plt.tight_layout()
    return gr.Plot(
        value=fig,
    )


def plot_total_bet_amount_per_trader_per_market(
    trades_df: pd.DataFrame, trader_filter: str = "all"
) -> gr.Plot:
    """Plots the total bet amount per trader per market."""
    traders_all = trades_df.copy(deep=True)
    traders_all["market_creator"] = "all"

    # merging both dataframes
    final_traders = pd.concat([traders_all, trades_df], ignore_index=True)
    final_traders = final_traders.sort_values(by="creation_date", ascending=True)

    # Create binary staking category
    final_traders["trader_type"] = final_traders["staking"].apply(
        lambda x: "non_Olas" if x == "non_Olas" else "Olas"
    )
    final_traders["trader_market"] = final_traders.apply(
        lambda x: (x["trader_type"], x["market_creator"]), axis=1
    )
    color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
    if trader_filter == "Olas":
        color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
        final_traders = final_traders.loc[final_traders["trader_type"] == "Olas"]
    elif trader_filter == "non_Olas":
        final_traders = final_traders.loc[final_traders["trader_type"] != "Olas"]

    total_bet_amount = (
        final_traders.groupby(
            ["month_year_week", "market_creator", "trader_address", "title"],
            sort=False,
        )["collateral_amount"]
        .sum()
        .reset_index(name="total_bet_amount")
    )
    # Convert string dates to datetime and sort them
    all_dates_dt = sorted(
        [
            datetime.strptime(date, "%b-%d-%Y")
            for date in total_bet_amount["month_year_week"].unique()
        ]
    )
    # Convert back to string format
    all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
    fig = px.box(
        total_bet_amount,
        x="month_year_week",
        y="total_bet_amount",
        color="market_creator",
        color_discrete_sequence=color_discrete_sequence,
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
            "trader_market": [
                ("Olas", "pearl"),
                ("non_Olas", "pearl"),
                ("Olas", "quickstart"),
                ("non_Olas", "quickstart"),
                ("Olas", "all"),
                ("non_Olas", "all"),
            ],
        },
        # facet_col="trader_type",
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly bet amounts per trader per market",
        legend=dict(yanchor="top", y=0.5),
        width=1000,  # Adjusted for better fit on laptop screens
        height=600,  # Adjusted for better fit on laptop screens
    )
    # for axis in fig.layout:
    #     if axis.startswith("xaxis"):
    #         fig.layout[axis].update(title="Week")
    fig.update_xaxes(tickformat="%b %d\n%Y")
    # Update layout to force x-axis category order (hotfix for a sorting issue)
    fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
    return gr.Plot(
        value=fig,
    )


def plot_nr_trades_per_trader_per_market(
    traders_data: pd.DataFrame, trader_filter: str = "all"
) -> gr.Plot:
    """Function to paint the plot with the metric nr_trades_per_market by trader type and market creator"""

    traders_all = traders_data.copy(deep=True)
    traders_all["market_creator"] = "all"

    # merging both dataframes
    final_traders = pd.concat([traders_all, traders_data], ignore_index=True)
    final_traders = final_traders.sort_values(by="creation_date", ascending=True)

    # Create binary staking category
    final_traders["trader_type"] = final_traders["staking"].apply(
        lambda x: "non_Olas" if x == "non_Olas" else "Olas"
    )
    final_traders["trader_market"] = final_traders.apply(
        lambda x: (x["trader_type"], x["market_creator"]), axis=1
    )
    color_discrete_sequence = ["purple", "goldenrod", "darkgreen"]
    if trader_filter == "Olas":
        color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
        final_traders = final_traders.loc[final_traders["trader_type"] == "Olas"]
    elif trader_filter == "non_Olas":
        final_traders = final_traders.loc[final_traders["trader_type"] != "Olas"]

    fig = px.box(
        final_traders,
        x="month_year_week",
        y="nr_trades_per_market",
        color="market_creator",
        color_discrete_sequence=color_discrete_sequence,
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
            "trader_market": [
                ("Olas", "pearl"),
                ("non_Olas", "pearl"),
                ("Olas", "quickstart"),
                ("non_Olas", "quickstart"),
                ("Olas", "all"),
                ("non_Olas", "all"),
            ],
        },
        # facet_col="trader_type",
    )
    fig.update_traces(boxmean=True)
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Nr trades per trader per market",
        legend=dict(yanchor="top", y=0.5),
        width=1000,  # Adjusted for better fit on laptop screens
        height=600,  # Adjusted for better fit on laptop screens
    )
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(
        value=fig,
    )