File size: 10,930 Bytes
1ca9e3b a594e78 1ca9e3b 92fce16 1ca9e3b 92fce16 1ca9e3b 6a0d13c 1ca9e3b 73c356e 1ca9e3b 73c356e 1ca9e3b a594e78 92fce16 a594e78 92fce16 b742b00 92fce16 a594e78 1ca9e3b 73c356e 5da9d34 1ca9e3b 5da9d34 1ca9e3b b1faf64 f59a9b2 b1faf64 1ca9e3b 6a0d13c 1ca9e3b 650abaa 1ca9e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import torch
import numpy as np
import spaces
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoConfig, AutoModelForCausalLM, LlavaForConditionalGeneration, LlavaOnevisionForConditionalGeneration, LlavaNextForConditionalGeneration, LlavaNextProcessor, AutoProcessor, PaliGemmaForConditionalGeneration
from transformers import CLIPProcessor, CLIPModel
from janus.models import MultiModalityCausalLM, VLChatProcessor
@spaces.GPU(duration=120)
def set_dtype_device(model, precision=16, device_map=None):
dtype = (torch.bfloat16 if torch.cuda.is_available() else torch.float16) if precision==16 else (torch.bfloat32 if torch.cuda.is_available() else torch.float32)
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
if torch.cuda.is_available():
model = model.to(dtype)
if not device_map:
model.cuda()
else:
torch.set_default_device("cpu")
model = model.to(dtype)
return model, dtype, cuda_device
class Model_Utils:
def __init__(self):
pass
@spaces.GPU(duration=120)
def prepare_inputs(self):
raise NotImplementedError
@spaces.GPU(duration=120)
def generate_outputs(self):
raise NotImplementedError
class Clip_Utils(Model_Utils):
def __init__(self):
self.edge = 224
super().__init__()
def init_Clip(self):
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.processor.feature_extractor.size = {"height": self.edge, "width": self.edge}
@spaces.GPU(duration=120)
def prepare_inputs(self, question_lst, image):
image = Image.fromarray(image)
# print("image_size: ", image.size)
inputs = self.processor(text=question_lst, images=image, return_tensors="pt", padding=True)
return inputs
class Janus_Utils(Model_Utils):
def __init__(self):
super().__init__()
def init_Janus(self, num_params="1B"):
model_path = f"deepseek-ai/Janus-Pro-{num_params}"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
self.vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True,
ignore_mismatched_sizes=True,
)
self.vl_gpt, self.dtype, self.cuda_device = set_dtype_device(self.vl_gpt)
self.vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
self.tokenizer = self.vl_chat_processor.tokenizer
return self.vl_gpt, self.tokenizer
@spaces.GPU(duration=120)
def prepare_inputs(self, question, image, answer=None):
conversation = [
{
"role": "<|User|>",
"content": f"<image_placeholder>\n{question}",
"images": [image],
},
{"role": "<|Assistant|>", "content": answer if answer else ""}
]
pil_images = [Image.fromarray(image)]
prepare_inputs = self.vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(self.cuda_device, dtype=self.dtype)
return prepare_inputs
@spaces.GPU(duration=120)
def generate_inputs_embeddings(self, prepare_inputs):
return self.vl_gpt.prepare_inputs_embeds(**prepare_inputs)
@spaces.GPU(duration=120)
def generate_outputs(self, inputs_embeds, prepare_inputs, temperature, top_p, with_attn=False):
outputs = self.vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=self.tokenizer.eos_token_id,
bos_token_id=self.tokenizer.bos_token_id,
eos_token_id=self.tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
return_dict_in_generate=True,
output_attentions=True
)
return outputs
class LLaVA_Utils(Model_Utils):
def __init__(self):
super().__init__()
def init_LLaVA(self, version):
if version == "1.5":
model_path = "llava-hf/llava-1.5-7b-hf"
config = AutoConfig.from_pretrained(model_path)
self.vl_gpt = LlavaForConditionalGeneration.from_pretrained(model_path,
low_cpu_mem_usage=True,
attn_implementation = 'eager',
device_map="auto",
output_attentions=True
)
self.vl_gpt, self.dtype, self.cuda_device = set_dtype_device(self.vl_gpt)
self.processor = AutoProcessor.from_pretrained(model_path)
self.tokenizer = self.processor.tokenizer
else:
model_path = "llava-hf/llava-onevision-qwen2-7b-si-hf"
self.processor = AutoProcessor.from_pretrained(model_path)
self.vl_gpt = LlavaOnevisionForConditionalGeneration.from_pretrained(model_path,
torch_dtype=torch.float16,
device_map="auto",
low_cpu_mem_usage=True,
attn_implementation = 'eager',
output_attentions=True)
self.vl_gpt, self.dtype, self.cuda_device = set_dtype_device(self.vl_gpt, device_map="auto")
self.tokenizer = self.processor.tokenizer
return self.vl_gpt, self.tokenizer
@spaces.GPU(duration=120)
def prepare_inputs(self, question, image, answer=None):
if answer:
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": question},
{"type": "image"},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": answer},
],
}
]
else:
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": question},
{"type": "image"},
],
},
]
prompt = self.processor.apply_chat_template(conversation, add_generation_prompt=True)
pil_images = [Image.fromarray(image).resize((384, 384))]
prepare_inputs = self.processor(
images=pil_images, text=prompt, return_tensors="pt"
).to(self.cuda_device, dtype=self.dtype)
return prepare_inputs
@spaces.GPU(duration=120)
def generate_inputs_embeddings(self, prepare_inputs):
return self.vl_gpt.prepare_inputs_embeds(**prepare_inputs)
@spaces.GPU(duration=120)
def generate_outputs(self, prepare_inputs, temperature, top_p):
outputs = self.vl_gpt.generate(
**prepare_inputs,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
return_dict_in_generate=True,
output_attentions=True
)
return outputs
class ChartGemma_Utils(Model_Utils):
def __init__(self):
super().__init__()
def init_ChartGemma(self):
model_path = "ahmed-masry/chartgemma"
self.vl_gpt = PaliGemmaForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.float16,
attn_implementation="eager",
output_attentions=True
)
self.vl_gpt, self.dtype, self.cuda_device = set_dtype_device(self.vl_gpt)
self.processor = AutoProcessor.from_pretrained(model_path)
self.tokenizer = self.processor.tokenizer
return self.vl_gpt, self.tokenizer
@spaces.GPU(duration=120)
def prepare_inputs(self, question, image):
pil_image = Image.fromarray(image)
prepare_inputs = self.processor(
images=pil_image, text=[question], return_tensors="pt"
).to(self.cuda_device, dtype=self.dtype)
return prepare_inputs
@spaces.GPU(duration=120)
def generate_inputs_embeddings(self, prepare_inputs):
return self.vl_gpt.prepare_inputs_embeds(**prepare_inputs)
@spaces.GPU(duration=120)
def generate_outputs(self, prepare_inputs, temperature, top_p):
outputs = self.vl_gpt.generate(
**prepare_inputs,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
return_dict_in_generate=True,
output_attentions=True
)
return outputs
def add_title_to_image(image, title, font_size=50):
"""Adds a title above an image using PIL and textbbox()."""
img_width, img_height = image.size
# Create a blank image for title
title_height = font_size + 10 # Some padding
title_image = Image.new("RGB", (img_width, title_height), color=(255, 255, 255)) # White background
draw = ImageDraw.Draw(title_image)
# Load font
try:
font = ImageFont.truetype("arial.ttf", font_size) # Use Arial if available
except:
font = ImageFont.load_default(font_size) # Use default if Arial not found
# Get text size (updated for PIL >= 10)
text_bbox = draw.textbbox((0, 0), title, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
# Center the title
text_position = ((img_width - text_width) // 2, (title_height - text_height) // 2)
draw.text(text_position, title, fill="black", font=font)
# Concatenate title with image
combined = Image.new("RGB", (img_width, img_height + title_height))
combined.paste(title_image, (0, 0)) # Place title at the top
combined.paste(image, (0, title_height)) # Place original image below
return combined
|