File size: 13,505 Bytes
1ca9e3b
 
 
 
 
369c141
b1faf64
f59a9b2
2067800
 
 
1ca9e3b
 
 
4db7aa5
1ca9e3b
 
 
 
 
 
 
 
 
 
73c356e
 
 
 
 
b1faf64
73c356e
 
1ca9e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b0453
f59a9b2
1ca9e3b
217eab6
1ca9e3b
 
 
 
 
 
 
8b5e432
1ca9e3b
 
 
73c356e
1ca9e3b
73c356e
 
1ca9e3b
 
73c356e
4db7aa5
73c356e
 
 
 
 
 
1ca9e3b
73c356e
 
 
 
1ca9e3b
73c356e
 
1ca9e3b
73c356e
 
 
 
 
 
 
 
 
 
 
 
 
1ca9e3b
73c356e
 
 
 
 
 
b1faf64
73c356e
 
 
 
 
 
 
 
a594e78
73c356e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8235fd2
1ca9e3b
4db7aa5
 
217eab6
4db7aa5
f59a9b2
 
 
4db7aa5
 
 
 
 
 
 
 
 
 
 
1ca9e3b
 
 
 
 
 
 
 
7e57874
1ca9e3b
f59a9b2
73c356e
7e57874
1ca9e3b
 
 
 
f59a9b2
 
 
b1faf64
7e57874
 
f59a9b2
 
7e57874
 
f59a9b2
73c356e
1ca9e3b
 
 
 
 
 
a594e78
 
 
7e57874
 
1ca9e3b
f59a9b2
7e57874
 
f59a9b2
73c356e
b1faf64
 
 
 
 
 
f59a9b2
 
b1faf64
73c356e
7e57874
b1faf64
f59a9b2
7e57874
 
f59a9b2
73c356e
b1faf64
1ca9e3b
 
217eab6
 
 
 
 
 
 
 
 
 
 
 
 
1ca9e3b
 
 
 
8235fd2
 
 
 
 
 
63b5fc2
8235fd2
 
1ca9e3b
 
 
73c356e
217eab6
63b5fc2
8235fd2
 
 
 
 
 
 
73c356e
63b5fc2
73c356e
ee8653b
73c356e
1ca9e3b
 
73c356e
 
8235fd2
1ca9e3b
 
 
 
 
 
 
 
f59a9b2
 
1ca9e3b
 
 
 
 
4db7aa5
8235fd2
1ca9e3b
 
 
 
 
217eab6
4db7aa5
1ca9e3b
217eab6
 
 
 
 
1ca9e3b
 
 
 
 
 
f59a9b2
217eab6
09b0453
1ca9e3b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from demo.visualization import generate_gradcam, VisualizationJanus, VisualizationClip, VisualizationChartGemma, VisualizationLLaVA
from demo.model_utils import Clip_Utils, Janus_Utils, LLaVA_Utils, ChartGemma_Utils, add_title_to_image
from demo.modified_attn import ModifiedLlamaAttention, ModifiedGemmaAttention
from questions.mini_VLAT import mini_VLAT_questions
from questions.VLAT_old import VLAT_old_questions
from questions.VLAT import VLAT_questions
import numpy as np
import matplotlib.pyplot as plt
import gc
import os
import spaces
from PIL import Image

def set_seed(model_seed = 42):
    torch.manual_seed(model_seed)
    np.random.seed(model_seed)
    torch.cuda.manual_seed(model_seed) if torch.cuda.is_available() else None

set_seed()
model_utils, vl_gpt, tokenizer = None, None, None
model_utils = ChartGemma_Utils()
vl_gpt, tokenizer = model_utils.init_ChartGemma()
for layer in vl_gpt.language_model.model.layers:
    layer.self_attn = ModifiedGemmaAttention(layer.self_attn)
model_name = "ChartGemma-3B"
language_model_max_layer = 24
language_model_best_layer_min = 9
language_model_best_layer_max = 15

def clean():
    global model_utils, vl_gpt, tokenizer, clip_utils
    # Move models to CPU first (prevents CUDA references)
    if 'vl_gpt' in globals() and vl_gpt is not None:
        vl_gpt.to("cpu")
    if 'clip_utils' in globals() and clip_utils is not None:
        del clip_utils

    # Delete all references
    del model_utils, vl_gpt, tokenizer
    model_utils, vl_gpt, tokenizer, clip_utils = None, None, None, None
    gc.collect()

    # Empty CUDA cache
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()  # Frees inter-process CUDA memory
    
    # Empty MacOS Metal backend (if using Apple Silicon)
    if torch.backends.mps.is_available():
        torch.mps.empty_cache()

# Multimodal Understanding function
@spaces.GPU(duration=120)
def multimodal_understanding(model_type, 
                             activation_map_method, 
                             visual_method, 
                             image, question, seed, top_p, temperature, target_token_idx,
                             visualization_layer_min, visualization_layer_max, focus, response_type, chart_type, accumulate_method, test_selector):
    # Clear CUDA cache before generating
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()

    # set seed
    set_seed(model_seed=seed)

    input_text_decoded = ""
    answer = ""
    
        
    for param in vl_gpt.parameters():
        param.requires_grad = True


    prepare_inputs = model_utils.prepare_inputs(question, image)

    if response_type == "answer + visualization":
        if model_name.split('-')[0] == "Janus":
            inputs_embeds = model_utils.generate_inputs_embeddings(prepare_inputs)
            outputs = model_utils.generate_outputs(inputs_embeds, prepare_inputs, temperature, top_p)
        else:
            outputs = model_utils.generate_outputs(prepare_inputs, temperature, top_p)

        sequences = outputs.sequences.cpu().tolist()
        answer = tokenizer.decode(sequences[0], skip_special_tokens=True)
        attention_raw = outputs.attentions
        print("answer generated")

    input_ids = prepare_inputs.input_ids[0].cpu().tolist()
    input_ids_decoded = [tokenizer.decode([input_ids[i]]) for i in range(len(input_ids))]

    if activation_map_method == "AG-CAM":
        # target_layers = vl_gpt.vision_model.vision_tower.blocks
        
        all_layers = [layer.self_attn for layer in vl_gpt.language_model.model.layers]
        
        print("layer values:", visualization_layer_min, visualization_layer_max)
        if visualization_layer_min != visualization_layer_max:
            print("multi layers")
            target_layers = all_layers[visualization_layer_min-1 : visualization_layer_max]
        else:
            print("single layer")
            target_layers = [all_layers[visualization_layer_min-1]]
        

        if model_name.split('-')[0] == "Janus":
            gradcam = VisualizationJanus(vl_gpt, target_layers)
        elif model_name.split('-')[0] == "LLaVA":
            gradcam = VisualizationLLaVA(vl_gpt, target_layers)
        elif model_name.split('-')[0] == "ChartGemma":
            gradcam = VisualizationChartGemma(vl_gpt, target_layers)

        start = 0
        cam = []
        
        # utilize the entire sequence, including <image>s, question, and answer
        entire_inputs = prepare_inputs
        if response_type == "answer + visualization" and focus == "question + answer":
            if model_name.split('-')[0] == "Janus" or model_name.split('-')[0] == "LLaVA":
                entire_inputs = model_utils.prepare_inputs(question, image, answer)
            else:
                entire_inputs["input_ids"] = outputs.sequences
                entire_inputs["attention_mask"] = torch.ones_like(outputs.sequences)
            input_ids = entire_inputs['input_ids'][0].cpu().tolist()
            input_ids_decoded = [tokenizer.decode([input_ids[i]]) for i in range(len(input_ids))]

        cam_tensors, grid_size, start = gradcam.generate_cam(entire_inputs, tokenizer, temperature, top_p, target_token_idx, visual_method, "Language Model", accumulate_method)
        if target_token_idx != -1:
            input_text_decoded = input_ids_decoded[start + target_token_idx]
            for i, cam_tensor in enumerate(cam_tensors):
                if i == target_token_idx:
                    cam_grid = cam_tensor.reshape(grid_size, grid_size)
                    cam_i = generate_gradcam(cam_grid, image)
                    cam = [add_title_to_image(cam_i, input_text_decoded)]
                    break
        else:
            cam = []
            for i, cam_tensor in enumerate(cam_tensors):
                cam_grid = cam_tensor.reshape(grid_size, grid_size)
                cam_i = generate_gradcam(cam_grid, image)
                cam_i = add_title_to_image(cam_i, input_ids_decoded[start + i])

                cam.append(cam_i)
                    
        gradcam.remove_hooks()
                

    # Collect Results
    RESULTS_ROOT = "./results"
    FILES_ROOT = f"{RESULTS_ROOT}/{model_name}/{focus}/{visual_method}/{test_selector}/{chart_type}/layer{visualization_layer_min}-{visualization_layer_max}/{'all_tokens' if target_token_idx == -1 else f'--{input_ids_decoded[start + target_token_idx]}--'}"
    os.makedirs(FILES_ROOT, exist_ok=True)
    
    for i, cam_p in enumerate(cam):
        cam_p.save(f"{FILES_ROOT}/{i}.png")
            
    with open(f"{FILES_ROOT}/input_text_decoded.txt", "w") as f:
        f.write(input_text_decoded)
        f.close()

    with open(f"{FILES_ROOT}/answer.txt", "w") as f:
        f.write(answer)
        f.close()
            


    return answer, cam, input_text_decoded




# Gradio interface

def model_slider_change(model_type):
    global model_utils, vl_gpt, tokenizer, clip_utils, model_name, language_model_max_layer, language_model_best_layer_min, language_model_best_layer_max, vision_model_best_layer
    model_name = model_type

    if model_type.split('-')[0] == "Janus":
        # best seed: 70
        clean()
        set_seed()
        model_utils = Janus_Utils()
        vl_gpt, tokenizer = model_utils.init_Janus(model_type.split('-')[-1])
        for layer in vl_gpt.language_model.model.layers:
            layer.self_attn = ModifiedLlamaAttention(layer.self_attn)
        
        language_model_max_layer = 24
        language_model_best_layer_min = 8
        language_model_best_layer_max = 10
        
        sliders = [
            gr.Slider(minimum=1, maximum=24, value=language_model_best_layer_min, step=1, label="visualization layers min"),
            gr.Slider(minimum=1, maximum=24, value=language_model_best_layer_max, step=1, label="visualization layers max"),
        ]
        return tuple(sliders)
    
    elif model_type.split('-')[0] == "LLaVA":
        
        clean()
        set_seed()
        model_utils = LLaVA_Utils()
        version = model_type.split('-')[1]
        vl_gpt, tokenizer = model_utils.init_LLaVA(version=version)
        language_model_max_layer = 32 if version == "1.5" else 28
        language_model_best_layer_min = 10
        language_model_best_layer_max = 10

        sliders = [
            gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer_min, step=1, label="visualization layers min"),
            gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer_max, step=1, label="visualization layers max"),
        ]
        return tuple(sliders)
    
    elif model_type.split('-')[0] == "ChartGemma":
        clean()
        set_seed()
        model_utils = ChartGemma_Utils()
        vl_gpt, tokenizer = model_utils.init_ChartGemma()
        for layer in vl_gpt.language_model.model.layers:
            layer.self_attn = ModifiedGemmaAttention(layer.self_attn)
        language_model_max_layer = 18
        language_model_best_layer_min = 9
        language_model_best_layer_max = 15

        sliders = [
            gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer_min, step=1, label="visualization layers min"),
            gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer_max, step=1, label="visualization layers max"),
        ]
        return tuple(sliders)



def test_change(test_selector):
    if test_selector == "mini-VLAT":
        return gr.Dataset(
                samples=mini_VLAT_questions,
            )
    elif test_selector == "VLAT":
        return gr.Dataset(
                samples=VLAT_questions,
            )
    else:
        return gr.Dataset(
                samples=VLAT_old_questions,
            )


with gr.Blocks() as demo:
    gr.Markdown(value="# Multimodal Understanding")
    
    with gr.Row():
        image_input = gr.Image(height=500, label="Image")
        activation_map_output = gr.Gallery(label="Visualization", height=500, columns=1, preview=True)

    with gr.Row():
        question_input = gr.Textbox(label="Question")
        understanding_output = gr.Textbox(label="Answer")

    with gr.Row():

        with gr.Column():
            model_selector = gr.Dropdown(choices=["ChartGemma-3B", "Janus-Pro-1B", "Janus-Pro-7B", "LLaVA-1.5-7B"], value="ChartGemma-3B", label="model")
            test_selector = gr.Dropdown(choices=["mini-VLAT", "VLAT", "VLAT-old"], value="mini-VLAT", label="test")
            chart_type = gr.Textbox(label="Chart Type", value="Any")
            und_seed_input = gr.Number(label="Seed", precision=0, value=42)
            top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
            temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
            target_token_idx = gr.Number(label="target_token_idx (-1 means all)", precision=0, value=-1)

        
        with gr.Column():
            response_type = gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="answer + visualization", label="response_type")
            focus = gr.Dropdown(choices=["question", "question + answer"], value="question", label="focus")
            activation_map_method = gr.Dropdown(choices=["AG-CAM"], value="AG-CAM", label="visualization type")
            accumulate_method = gr.Dropdown(choices=["sum", "mult"], value="sum", label="layers accumulate method")
            visual_method = gr.Dropdown(choices=["softmax", "sigmoid"], value="softmax", label="activation function")
            

            visualization_layers_min = gr.Slider(minimum=1, maximum=18, value=11, step=1, label="visualization layers min")
            visualization_layers_max = gr.Slider(minimum=1, maximum=18, value=15, step=1, label="visualization layers max")

        
        


        model_selector.change(
            fn=model_slider_change, 
            inputs=model_selector, 
            outputs=[
                visualization_layers_min,
                visualization_layers_max
            ]
        )

        

    understanding_button = gr.Button("Submit")
    
    understanding_target_token_decoded_output = gr.Textbox(label="Target Token Decoded")


    examples_inpainting = gr.Examples(
        label="Multimodal Understanding examples",
        examples=mini_VLAT_questions,
        inputs=[chart_type, question_input, image_input],
    )

    test_selector.change(
        fn=test_change, 
        inputs=test_selector,
        outputs=examples_inpainting.dataset)
    


        
    understanding_button.click(
        multimodal_understanding,
        inputs=[model_selector, activation_map_method, visual_method, image_input, question_input, und_seed_input, top_p, temperature, target_token_idx, 
                visualization_layers_min, visualization_layers_max, focus, response_type, chart_type, accumulate_method, test_selector],
        outputs=[understanding_output, activation_map_output, understanding_target_token_decoded_output]
    )
    
demo.launch(share=True)
# demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path")