File size: 13,505 Bytes
1ca9e3b 369c141 b1faf64 f59a9b2 2067800 1ca9e3b 4db7aa5 1ca9e3b 73c356e b1faf64 73c356e 1ca9e3b 09b0453 f59a9b2 1ca9e3b 217eab6 1ca9e3b 8b5e432 1ca9e3b 73c356e 1ca9e3b 73c356e 1ca9e3b 73c356e 4db7aa5 73c356e 1ca9e3b 73c356e 1ca9e3b 73c356e 1ca9e3b 73c356e 1ca9e3b 73c356e b1faf64 73c356e a594e78 73c356e 8235fd2 1ca9e3b 4db7aa5 217eab6 4db7aa5 f59a9b2 4db7aa5 1ca9e3b 7e57874 1ca9e3b f59a9b2 73c356e 7e57874 1ca9e3b f59a9b2 b1faf64 7e57874 f59a9b2 7e57874 f59a9b2 73c356e 1ca9e3b a594e78 7e57874 1ca9e3b f59a9b2 7e57874 f59a9b2 73c356e b1faf64 f59a9b2 b1faf64 73c356e 7e57874 b1faf64 f59a9b2 7e57874 f59a9b2 73c356e b1faf64 1ca9e3b 217eab6 1ca9e3b 8235fd2 63b5fc2 8235fd2 1ca9e3b 73c356e 217eab6 63b5fc2 8235fd2 73c356e 63b5fc2 73c356e ee8653b 73c356e 1ca9e3b 73c356e 8235fd2 1ca9e3b f59a9b2 1ca9e3b 4db7aa5 8235fd2 1ca9e3b 217eab6 4db7aa5 1ca9e3b 217eab6 1ca9e3b f59a9b2 217eab6 09b0453 1ca9e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from demo.visualization import generate_gradcam, VisualizationJanus, VisualizationClip, VisualizationChartGemma, VisualizationLLaVA
from demo.model_utils import Clip_Utils, Janus_Utils, LLaVA_Utils, ChartGemma_Utils, add_title_to_image
from demo.modified_attn import ModifiedLlamaAttention, ModifiedGemmaAttention
from questions.mini_VLAT import mini_VLAT_questions
from questions.VLAT_old import VLAT_old_questions
from questions.VLAT import VLAT_questions
import numpy as np
import matplotlib.pyplot as plt
import gc
import os
import spaces
from PIL import Image
def set_seed(model_seed = 42):
torch.manual_seed(model_seed)
np.random.seed(model_seed)
torch.cuda.manual_seed(model_seed) if torch.cuda.is_available() else None
set_seed()
model_utils, vl_gpt, tokenizer = None, None, None
model_utils = ChartGemma_Utils()
vl_gpt, tokenizer = model_utils.init_ChartGemma()
for layer in vl_gpt.language_model.model.layers:
layer.self_attn = ModifiedGemmaAttention(layer.self_attn)
model_name = "ChartGemma-3B"
language_model_max_layer = 24
language_model_best_layer_min = 9
language_model_best_layer_max = 15
def clean():
global model_utils, vl_gpt, tokenizer, clip_utils
# Move models to CPU first (prevents CUDA references)
if 'vl_gpt' in globals() and vl_gpt is not None:
vl_gpt.to("cpu")
if 'clip_utils' in globals() and clip_utils is not None:
del clip_utils
# Delete all references
del model_utils, vl_gpt, tokenizer
model_utils, vl_gpt, tokenizer, clip_utils = None, None, None, None
gc.collect()
# Empty CUDA cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect() # Frees inter-process CUDA memory
# Empty MacOS Metal backend (if using Apple Silicon)
if torch.backends.mps.is_available():
torch.mps.empty_cache()
# Multimodal Understanding function
@spaces.GPU(duration=120)
def multimodal_understanding(model_type,
activation_map_method,
visual_method,
image, question, seed, top_p, temperature, target_token_idx,
visualization_layer_min, visualization_layer_max, focus, response_type, chart_type, accumulate_method, test_selector):
# Clear CUDA cache before generating
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# set seed
set_seed(model_seed=seed)
input_text_decoded = ""
answer = ""
for param in vl_gpt.parameters():
param.requires_grad = True
prepare_inputs = model_utils.prepare_inputs(question, image)
if response_type == "answer + visualization":
if model_name.split('-')[0] == "Janus":
inputs_embeds = model_utils.generate_inputs_embeddings(prepare_inputs)
outputs = model_utils.generate_outputs(inputs_embeds, prepare_inputs, temperature, top_p)
else:
outputs = model_utils.generate_outputs(prepare_inputs, temperature, top_p)
sequences = outputs.sequences.cpu().tolist()
answer = tokenizer.decode(sequences[0], skip_special_tokens=True)
attention_raw = outputs.attentions
print("answer generated")
input_ids = prepare_inputs.input_ids[0].cpu().tolist()
input_ids_decoded = [tokenizer.decode([input_ids[i]]) for i in range(len(input_ids))]
if activation_map_method == "AG-CAM":
# target_layers = vl_gpt.vision_model.vision_tower.blocks
all_layers = [layer.self_attn for layer in vl_gpt.language_model.model.layers]
print("layer values:", visualization_layer_min, visualization_layer_max)
if visualization_layer_min != visualization_layer_max:
print("multi layers")
target_layers = all_layers[visualization_layer_min-1 : visualization_layer_max]
else:
print("single layer")
target_layers = [all_layers[visualization_layer_min-1]]
if model_name.split('-')[0] == "Janus":
gradcam = VisualizationJanus(vl_gpt, target_layers)
elif model_name.split('-')[0] == "LLaVA":
gradcam = VisualizationLLaVA(vl_gpt, target_layers)
elif model_name.split('-')[0] == "ChartGemma":
gradcam = VisualizationChartGemma(vl_gpt, target_layers)
start = 0
cam = []
# utilize the entire sequence, including <image>s, question, and answer
entire_inputs = prepare_inputs
if response_type == "answer + visualization" and focus == "question + answer":
if model_name.split('-')[0] == "Janus" or model_name.split('-')[0] == "LLaVA":
entire_inputs = model_utils.prepare_inputs(question, image, answer)
else:
entire_inputs["input_ids"] = outputs.sequences
entire_inputs["attention_mask"] = torch.ones_like(outputs.sequences)
input_ids = entire_inputs['input_ids'][0].cpu().tolist()
input_ids_decoded = [tokenizer.decode([input_ids[i]]) for i in range(len(input_ids))]
cam_tensors, grid_size, start = gradcam.generate_cam(entire_inputs, tokenizer, temperature, top_p, target_token_idx, visual_method, "Language Model", accumulate_method)
if target_token_idx != -1:
input_text_decoded = input_ids_decoded[start + target_token_idx]
for i, cam_tensor in enumerate(cam_tensors):
if i == target_token_idx:
cam_grid = cam_tensor.reshape(grid_size, grid_size)
cam_i = generate_gradcam(cam_grid, image)
cam = [add_title_to_image(cam_i, input_text_decoded)]
break
else:
cam = []
for i, cam_tensor in enumerate(cam_tensors):
cam_grid = cam_tensor.reshape(grid_size, grid_size)
cam_i = generate_gradcam(cam_grid, image)
cam_i = add_title_to_image(cam_i, input_ids_decoded[start + i])
cam.append(cam_i)
gradcam.remove_hooks()
# Collect Results
RESULTS_ROOT = "./results"
FILES_ROOT = f"{RESULTS_ROOT}/{model_name}/{focus}/{visual_method}/{test_selector}/{chart_type}/layer{visualization_layer_min}-{visualization_layer_max}/{'all_tokens' if target_token_idx == -1 else f'--{input_ids_decoded[start + target_token_idx]}--'}"
os.makedirs(FILES_ROOT, exist_ok=True)
for i, cam_p in enumerate(cam):
cam_p.save(f"{FILES_ROOT}/{i}.png")
with open(f"{FILES_ROOT}/input_text_decoded.txt", "w") as f:
f.write(input_text_decoded)
f.close()
with open(f"{FILES_ROOT}/answer.txt", "w") as f:
f.write(answer)
f.close()
return answer, cam, input_text_decoded
# Gradio interface
def model_slider_change(model_type):
global model_utils, vl_gpt, tokenizer, clip_utils, model_name, language_model_max_layer, language_model_best_layer_min, language_model_best_layer_max, vision_model_best_layer
model_name = model_type
if model_type.split('-')[0] == "Janus":
# best seed: 70
clean()
set_seed()
model_utils = Janus_Utils()
vl_gpt, tokenizer = model_utils.init_Janus(model_type.split('-')[-1])
for layer in vl_gpt.language_model.model.layers:
layer.self_attn = ModifiedLlamaAttention(layer.self_attn)
language_model_max_layer = 24
language_model_best_layer_min = 8
language_model_best_layer_max = 10
sliders = [
gr.Slider(minimum=1, maximum=24, value=language_model_best_layer_min, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=24, value=language_model_best_layer_max, step=1, label="visualization layers max"),
]
return tuple(sliders)
elif model_type.split('-')[0] == "LLaVA":
clean()
set_seed()
model_utils = LLaVA_Utils()
version = model_type.split('-')[1]
vl_gpt, tokenizer = model_utils.init_LLaVA(version=version)
language_model_max_layer = 32 if version == "1.5" else 28
language_model_best_layer_min = 10
language_model_best_layer_max = 10
sliders = [
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer_min, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer_max, step=1, label="visualization layers max"),
]
return tuple(sliders)
elif model_type.split('-')[0] == "ChartGemma":
clean()
set_seed()
model_utils = ChartGemma_Utils()
vl_gpt, tokenizer = model_utils.init_ChartGemma()
for layer in vl_gpt.language_model.model.layers:
layer.self_attn = ModifiedGemmaAttention(layer.self_attn)
language_model_max_layer = 18
language_model_best_layer_min = 9
language_model_best_layer_max = 15
sliders = [
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer_min, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer_max, step=1, label="visualization layers max"),
]
return tuple(sliders)
def test_change(test_selector):
if test_selector == "mini-VLAT":
return gr.Dataset(
samples=mini_VLAT_questions,
)
elif test_selector == "VLAT":
return gr.Dataset(
samples=VLAT_questions,
)
else:
return gr.Dataset(
samples=VLAT_old_questions,
)
with gr.Blocks() as demo:
gr.Markdown(value="# Multimodal Understanding")
with gr.Row():
image_input = gr.Image(height=500, label="Image")
activation_map_output = gr.Gallery(label="Visualization", height=500, columns=1, preview=True)
with gr.Row():
question_input = gr.Textbox(label="Question")
understanding_output = gr.Textbox(label="Answer")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(choices=["ChartGemma-3B", "Janus-Pro-1B", "Janus-Pro-7B", "LLaVA-1.5-7B"], value="ChartGemma-3B", label="model")
test_selector = gr.Dropdown(choices=["mini-VLAT", "VLAT", "VLAT-old"], value="mini-VLAT", label="test")
chart_type = gr.Textbox(label="Chart Type", value="Any")
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
target_token_idx = gr.Number(label="target_token_idx (-1 means all)", precision=0, value=-1)
with gr.Column():
response_type = gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="answer + visualization", label="response_type")
focus = gr.Dropdown(choices=["question", "question + answer"], value="question", label="focus")
activation_map_method = gr.Dropdown(choices=["AG-CAM"], value="AG-CAM", label="visualization type")
accumulate_method = gr.Dropdown(choices=["sum", "mult"], value="sum", label="layers accumulate method")
visual_method = gr.Dropdown(choices=["softmax", "sigmoid"], value="softmax", label="activation function")
visualization_layers_min = gr.Slider(minimum=1, maximum=18, value=11, step=1, label="visualization layers min")
visualization_layers_max = gr.Slider(minimum=1, maximum=18, value=15, step=1, label="visualization layers max")
model_selector.change(
fn=model_slider_change,
inputs=model_selector,
outputs=[
visualization_layers_min,
visualization_layers_max
]
)
understanding_button = gr.Button("Submit")
understanding_target_token_decoded_output = gr.Textbox(label="Target Token Decoded")
examples_inpainting = gr.Examples(
label="Multimodal Understanding examples",
examples=mini_VLAT_questions,
inputs=[chart_type, question_input, image_input],
)
test_selector.change(
fn=test_change,
inputs=test_selector,
outputs=examples_inpainting.dataset)
understanding_button.click(
multimodal_understanding,
inputs=[model_selector, activation_map_method, visual_method, image_input, question_input, und_seed_input, top_p, temperature, target_token_idx,
visualization_layers_min, visualization_layers_max, focus, response_type, chart_type, accumulate_method, test_selector],
outputs=[understanding_output, activation_map_output, understanding_target_token_decoded_output]
)
demo.launch(share=True)
# demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path") |