import argparse import collections import sys import requests import socket import torch import mlflow import mlflow.pytorch import data_loader.data_loaders as module_data import model.loss as module_loss import model.metric as module_metric import model.model as module_arch from parse_config import ConfigParser from trainer import Trainer from collections import OrderedDict import random def log_params(conf: OrderedDict, parent_key: str = None): for key, value in conf.items(): if parent_key is not None: combined_key = f'{parent_key}-{key}' else: combined_key = key if not isinstance(value, OrderedDict): mlflow.log_param(combined_key, value) else: log_params(value, combined_key) def main(config: ConfigParser): logger = config.get_logger('train') data_loader = getattr(module_data, config['data_loader']['type'])( config['data_loader']['args']['data_dir'], batch_size= config['data_loader']['args']['batch_size'], shuffle=config['data_loader']['args']['shuffle'], validation_split=config['data_loader']['args']['validation_split'], num_batches=config['data_loader']['args']['num_batches'], training=True, num_workers=config['data_loader']['args']['num_workers'], pin_memory=config['data_loader']['args']['pin_memory'] ) valid_data_loader = data_loader.split_validation() # test_data_loader = None test_data_loader = getattr(module_data, config['data_loader']['type'])( config['data_loader']['args']['data_dir'], batch_size=128, shuffle=False, validation_split=0.0, training=False, num_workers=2 ).split_validation() # build model architecture, then print to console model = config.initialize('arch', module_arch) # get function handles of loss and metrics logger.info(config.config) if hasattr(data_loader.dataset, 'num_raw_example'): num_examp = data_loader.dataset.num_raw_example else: num_examp = len(data_loader.dataset) train_loss = getattr(module_loss, config['train_loss']['type'])(num_examp=num_examp, num_classes=config['num_classes'], beta=config['train_loss']['args']['beta']) val_loss = getattr(module_loss, config['val_loss']) metrics = [getattr(module_metric, met) for met in config['metrics']] # build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = config.initialize('optimizer', torch.optim, [{'params': trainable_params}]) lr_scheduler = config.initialize('lr_scheduler', torch.optim.lr_scheduler, optimizer) trainer = Trainer(model, train_loss, metrics, optimizer, config=config, data_loader=data_loader, valid_data_loader=valid_data_loader, test_data_loader=test_data_loader, lr_scheduler=lr_scheduler, val_criterion=val_loss) trainer.train() logger = config.get_logger('trainer', config['trainer']['verbosity']) cfg_trainer = config['trainer'] if __name__ == '__main__': args = argparse.ArgumentParser(description='PyTorch Template') args.add_argument('-c', '--config', default=None, type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') args.add_argument('-d', '--device', default=None, type=str, help='indices of GPUs to enable (default: all)') # custom cli options to modify configuration from default values given in json file. CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') options = [ CustomArgs(['--lr', '--learning_rate'], type=float, target=('optimizer', 'args', 'lr')), CustomArgs(['--bs', '--batch_size'], type=int, target=('data_loader', 'args', 'batch_size')), CustomArgs(['--lamb', '--lamb'], type=float, target=('train_loss', 'args', 'lambda')), CustomArgs(['--beta', '--beta'], type=float, target=('train_loss', 'args', 'beta')), CustomArgs(['--percent', '--percent'], type=float, target=('trainer', 'percent')), CustomArgs(['--asym', '--asym'], type=bool, target=('trainer', 'asym')), CustomArgs(['--name', '--exp_name'], type=str, target=('name',)), CustomArgs(['--seed', '--seed'], type=int, target=('seed',)) ] config = ConfigParser.get_instance(args, options) random.seed(config['seed']) torch.manual_seed(config['seed']) torch.cuda.manual_seed_all(config['seed']) main(config)