assi1 / ELR_plus /train.py
uthurumella's picture
Upload 69 files
72fc481 verified
import argparse
import collections
import sys
import requests
import socket
import torch
import mlflow
import mlflow.pytorch
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
from collections import OrderedDict
import random
def log_params(conf: OrderedDict, parent_key: str = None):
for key, value in conf.items():
if parent_key is not None:
combined_key = f'{parent_key}-{key}'
else:
combined_key = key
if not isinstance(value, OrderedDict):
mlflow.log_param(combined_key, value)
else:
log_params(value, combined_key)
def main(config: ConfigParser):
logger = config.get_logger('train')
logger.info(config.config)
# setup data_loader instances
data_loader1 = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size= config['data_loader']['args']['batch_size'],
shuffle=config['data_loader']['args']['shuffle'],
validation_split=config['data_loader']['args']['validation_split'],
num_batches=config['data_loader']['args']['num_batches'],
training=True,
num_workers=config['data_loader']['args']['num_workers'],
pin_memory=config['data_loader']['args']['pin_memory']
)
data_loader2 = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size= config['data_loader']['args']['batch_size2'],
shuffle=config['data_loader']['args']['shuffle'],
validation_split=config['data_loader']['args']['validation_split'],
num_batches=config['data_loader']['args']['num_batches'],
training=True,
num_workers=config['data_loader']['args']['num_workers'],
pin_memory=config['data_loader']['args']['pin_memory']
)
valid_data_loader = data_loader1.split_validation()
test_data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size=128,
shuffle=False,
validation_split=0.0,
training=False,
num_workers=2
).split_validation()
# build model architecture
model1 = config.initialize('arch1', module_arch)
model_ema1 = config.initialize('arch1', module_arch)
model_ema1_copy = config.initialize('arch1', module_arch)
model2 = config.initialize('arch2', module_arch)
model_ema2 = config.initialize('arch2', module_arch)
model_ema2_copy = config.initialize('arch2', module_arch)
# get function handles of loss and metrics
device_id = list(range(min(torch.cuda.device_count(), config['n_gpu'])))
if hasattr(data_loader1.dataset, 'num_raw_example') and hasattr(data_loader2.dataset, 'num_raw_example'):
num_examp1 = data_loader1.dataset.num_raw_example
num_examp2 = data_loader2.dataset.num_raw_example
else:
num_examp1 = len(data_loader1.dataset)
num_examp2 = len(data_loader2.dataset)
train_loss1 = getattr(module_loss, config['train_loss']['type'])(num_examp=num_examp1, num_classes=config['num_classes'],
device = 'cuda:'+ str(device_id[0]), config = config.config, beta=config['train_loss']['args']['beta'])
train_loss2 = getattr(module_loss, config['train_loss']['type'])(num_examp=num_examp2, num_classes=config['num_classes'],
device = 'cuda:'+str(device_id[-1]), config = config.config, beta=config['train_loss']['args']['beta'])
val_loss = getattr(module_loss, config['val_loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params1 = filter(lambda p: p.requires_grad, model1.parameters())
trainable_params2 = filter(lambda p: p.requires_grad, model2.parameters())
optimizer1 = config.initialize('optimizer1', torch.optim, [{'params': trainable_params1}])
optimizer2 = config.initialize('optimizer2', torch.optim, [{'params': trainable_params2}])
lr_scheduler1 = config.initialize('lr_scheduler', torch.optim.lr_scheduler, optimizer1)
lr_scheduler2 = config.initialize('lr_scheduler', torch.optim.lr_scheduler, optimizer2)
trainer = Trainer(model1, model2, model_ema1, model_ema2, train_loss1, train_loss2,
metrics,
optimizer1, optimizer2,
config=config,
data_loader1=data_loader1,
data_loader2=data_loader2,
valid_data_loader=valid_data_loader,
test_data_loader=test_data_loader,
lr_scheduler1=lr_scheduler1,
lr_scheduler2=lr_scheduler2,
val_criterion=val_loss,
model_ema1_copy = model_ema1_copy,
model_ema2_copy = model_ema2_copy)
trainer.train()
logger = config.get_logger('trainer', config['trainer']['verbosity'])
cfg_trainer = config['trainer']
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target=('optimizer', 'args', 'lr')),
CustomArgs(['--bs', '--batch_size'], type=int, target=('data_loader', 'args', 'batch_size')),
CustomArgs(['--beta', '--beta'], type=float, target=('train_loss', 'args', 'beta')),
CustomArgs(['--lambda', '--lambda'], type=float, target=('train_loss', 'args', 'lambda')),
CustomArgs(['--percent', '--percent'], type=float, target=('trainer', 'percent')),
CustomArgs(['--asym', '--asym'], type=bool, target=('trainer', 'asym')),
CustomArgs(['--name', '--exp_name'], type=str, target=('name',)),
CustomArgs(['--malpha', '--mixup_alpha'], type=float, target=('mixup_alpha',)),
CustomArgs(['--ealpha', '--ema_alpha'], type=float, target=('ema_alpha',)),
CustomArgs(['--nb', '--num_batches'], type=float, target=('data_loader', 'args', 'num_batches')),
CustomArgs(['--warm', '--warmup'], type=int, target=('trainer', 'warmup')),
CustomArgs(['--seed', '--seed'], type=int, target=('seed',)),
CustomArgs(['--wc1', '--weight_decay1'], type=float, target=('optimizer1','weight_decay')),
CustomArgs(['--wc2', '--weight_decay2'], type=float, target=('optimizer2','weight_decay')),
CustomArgs(['--estep', '--ema_step'], type=float, target=('ema_step',)),
]
config = ConfigParser.get_instance(args, options)
random.seed(config['seed'])
torch.manual_seed(config['seed'])
torch.cuda.manual_seed_all(config['seed'])
main(config)