Spaces:
Configuration error
Configuration error
from typing import TypeVar, List, Tuple | |
import torch | |
from tqdm import tqdm | |
from abc import abstractmethod | |
from numpy import inf | |
from logger import TensorboardWriter | |
import numpy as np | |
class BaseTrainer: | |
""" | |
Base class for all trainers | |
""" | |
def __init__(self, model1, model2, model_ema1, model_ema2, train_criterion1, | |
train_criterion2, metrics, optimizer1, optimizer2, config, val_criterion, | |
model_ema1_copy, model_ema2_copy): | |
self.config = config.config | |
self.logger = config.get_logger('trainer', config['trainer']['verbosity']) | |
# setup GPU device if available, move model into configured device | |
self.device, self.device_ids = self._prepare_device(config['n_gpu']) | |
if len(self.device_ids) > 1: | |
print('Using Multi-Processing!') | |
self.model1 = model1.to(self.device+str(self.device_ids[0])) | |
self.model2 = model2.to(self.device+str(self.device_ids[-1])) | |
if model_ema1 is not None: | |
self.model_ema1 = model_ema1.to(self.device+str(self.device_ids[0])) | |
self.model_ema2_copy = model_ema2_copy.to(self.device+str(self.device_ids[0])) | |
else: | |
self.model_ema1 = None | |
self.model_ema2_copy = None | |
if model_ema2 is not None: | |
self.model_ema2 = model_ema2.to(self.device+str(self.device_ids[-1])) | |
self.model_ema1_copy = model_ema1_copy.to(self.device+str(self.device_ids[-1])) | |
else: | |
self.model_ema2 = None | |
self.model_ema1_copy = None | |
if self.model_ema1 is not None: | |
for param in self.model_ema1.parameters(): | |
param.detach_() | |
for param in self.model_ema2_copy.parameters(): | |
param.detach_() | |
if self.model_ema2 is not None: | |
for param in self.model_ema2.parameters(): | |
param.detach_() | |
for param in self.model_ema1_copy.parameters(): | |
param.detach_() | |
self.train_criterion1 = train_criterion1.to(self.device+str(self.device_ids[0])) | |
self.train_criterion2 = train_criterion2.to(self.device+str(self.device_ids[-1])) | |
self.val_criterion = val_criterion | |
self.metrics = metrics | |
self.optimizer1 = optimizer1 | |
self.optimizer2 = optimizer2 | |
cfg_trainer = config['trainer'] | |
self.epochs = cfg_trainer['epochs'] | |
self.save_period = cfg_trainer['save_period'] | |
self.monitor = cfg_trainer.get('monitor', 'off') | |
# configuration to monitor model performance and save best | |
if self.monitor == 'off': | |
self.mnt_mode = 'off' | |
self.mnt_best = 0 | |
else: | |
self.mnt_mode, self.mnt_metric = self.monitor.split() | |
assert self.mnt_mode in ['min', 'max'] | |
self.mnt_best = inf if self.mnt_mode == 'min' else -inf | |
self.early_stop = cfg_trainer.get('early_stop', inf) | |
self.start_epoch = 1 | |
self.global_step = 0 | |
self.checkpoint_dir = config.save_dir | |
# setup visualization writer instance | |
self.writer = TensorboardWriter(config.log_dir, self.logger, cfg_trainer['tensorboard']) | |
if config.resume is not None: | |
self._resume_checkpoint(config.resume) | |
def _train_epoch(self, epoch): | |
""" | |
Training logic for an epoch | |
:param epoch: Current epochs number | |
""" | |
raise NotImplementedError | |
def train(self): | |
""" | |
Full training logic | |
""" | |
if len(self.device_ids) > 1: | |
import torch.multiprocessing as mp | |
mp.set_start_method('spawn', force =True) | |
not_improved_count = 0 | |
for epoch in tqdm(range(self.start_epoch, self.epochs + 1), desc='Total progress: '): | |
if epoch <= self.config['trainer']['warmup']: | |
if len(self.device_ids) > 1: | |
q1 = mp.Queue() | |
q2 = mp.Queue() | |
p1 = mp.Process(target=self._warmup_epoch, args=(epoch, self.model1, self.data_loader1, self.optimizer1, self.train_criterion1, self.lr_scheduler1, self.device+str(self.device_ids[0]), q1 )) | |
p2 = mp.Process(target=self._warmup_epoch, args=(epoch, self.model2, self.data_loader2, self.optimizer2, self.train_criterion2, self.lr_scheduler2, self.device+str(self.device_ids[-1]), q2)) | |
p1.start() | |
p2.start() | |
result1 = q1.get() | |
result2 = q2.get() | |
p1.join() | |
p2.join() | |
else: | |
result1 = self._warmup_epoch(epoch, self.model1, self.data_loader1, self.optimizer1, self.train_criterion1, self.lr_scheduler1, self.device+str(self.device_ids[0])) | |
result2 = self._warmup_epoch(epoch, self.model2, self.data_loader2, self.optimizer2, self.train_criterion2, self.lr_scheduler2, self.device+str(self.device_ids[-1])) | |
if len(self.device_ids) > 1: | |
self.model_ema1_copy.load_state_dict(self.model_ema1.state_dict()) | |
self.model_ema2_copy.load_state_dict(self.model_ema2.state_dict()) | |
if self.do_validation: | |
q1 = mp.Queue() | |
p1 = mp.Process(target=self._valid_epoch, args=(epoch, self.model1, self.model_ema2_copy, self.device+str(self.device_ids[0]),q1)) | |
if self.do_test: | |
q2 = mp.Queue() | |
p2 = mp.Process(target=self._test_epoch, args=(epoch, self.model1, self.model_ema2_copy, self.device+str(self.device_ids[0]),q2)) | |
p1.start() | |
p2.start() | |
val_log = q1.get() | |
test_log, test_meta = q2.get() | |
result1.update(val_log) | |
result2.update(val_log) | |
result1.update(test_log) | |
result2.update(test_log) | |
p1.join() | |
p2.join() | |
else: | |
if self.do_validation: | |
val_log = self._valid_epoch(epoch, self.model1, self.model2, self.device+str(self.device_ids[0])) | |
result1.update(val_log) | |
result2.update(val_log) | |
if self.do_test: | |
test_log, test_meta = self._test_epoch(epoch, self.model1, self.model2, self.device+str(self.device_ids[0])) | |
result1.update(test_log) | |
result2.update(test_log) | |
else: | |
test_meta = [0,0] | |
else: | |
if len(self.device_ids) > 1: | |
q1 = mp.Queue() | |
q2 = mp.Queue() | |
p1 = mp.Process(target=self._train_epoch, args=(epoch, self.model1, self.model_ema1, self.model_ema2_copy, self.data_loader1, self.train_criterion1, self.optimizer1, self.lr_scheduler1, self.device+str(self.device_ids[0]), q1 )) | |
p2 = mp.Process(target=self._train_epoch, args=(epoch, self.model2, self.model_ema2, self.model_ema1_copy, self.data_loader2, self.train_criterion2, self.optimizer2, self.lr_scheduler2, self.device+str(self.device_ids[-1]), q2 )) | |
p1.start() | |
p2.start() | |
result1 = q1.get() | |
result2 = q2.get() | |
p1.join() | |
p2.join() | |
else: | |
result1 = self._train_epoch(epoch, self.model1, self.model_ema1, self.model_ema2, self.data_loader1, self.train_criterion1, self.optimizer1, self.lr_scheduler1, self.device+str(self.device_ids[0])) | |
result2 = self._train_epoch(epoch, self.model2, self.model_ema2, self.model_ema1, self.data_loader2, self.train_criterion2, self.optimizer2, self.lr_scheduler2, self.device+str(self.device_ids[-1])) | |
self.global_step += result1['local_step'] | |
if len(self.device_ids) > 1: | |
self.model_ema1_copy.load_state_dict(self.model_ema1.state_dict()) | |
self.model_ema2_copy.load_state_dict(self.model_ema2.state_dict()) | |
if self.do_validation: | |
q1 = mp.Queue() | |
p1 = mp.Process(target=self._valid_epoch, args=(epoch, self.model1, self.model_ema2_copy, self.device+str(self.device_ids[0]),q1)) | |
if self.do_test: | |
q2 = mp.Queue() | |
p2 = mp.Process(target=self._test_epoch, args=(epoch, self.model1, self.model_ema2_copy, self.device+str(self.device_ids[0]),q2)) | |
p1.start() | |
p2.start() | |
val_log = q1.get() | |
test_log = q2.get() | |
result1.update(val_log) | |
result2.update(val_log) | |
result1.update(test_log) | |
result2.update(test_log) | |
p1.join() | |
p2.join() | |
else: | |
if self.do_validation: | |
val_log = self._valid_epoch(epoch, self.model1, self.model2, self.device+str(self.device_ids[0])) | |
result1.update(val_log) | |
result2.update(val_log) | |
if self.do_test: | |
test_log = self._test_epoch(epoch, self.model1, self.model2, self.device+str(self.device_ids[0])) | |
result1.update(test_log) | |
result2.update(test_log) | |
# save logged informations into log dict | |
log = {'epoch': epoch} | |
for key, value in result1.items(): | |
if key == 'metrics': | |
log.update({'Net1' + mtr.__name__: value[i] for i, mtr in enumerate(self.metrics)}) | |
log.update({'Net2' + mtr.__name__: result2[key][i] for i, mtr in enumerate(self.metrics)}) | |
elif key == 'val_metrics': | |
log.update({'val_' + mtr.__name__: value[i] for i, mtr in enumerate(self.metrics)}) | |
elif key == 'test_metrics': | |
log.update({'test_' + mtr.__name__: value[i] for i, mtr in enumerate(self.metrics)}) | |
else: | |
log['Net1'+key] = value | |
log['Net2'+key] = result2[key] | |
# print logged informations to the screen | |
for key, value in log.items(): | |
self.logger.info(' {:15s}: {}'.format(str(key), value)) | |
# evaluate model performance according to configured metric, save best checkpoint as model_best | |
best = False | |
if self.mnt_mode != 'off': | |
try: | |
# check whether model performance improved or not, according to specified metric(mnt_metric) | |
improved = (self.mnt_mode == 'min' and log[self.mnt_metric] <= self.mnt_best) or \ | |
(self.mnt_mode == 'max' and log[self.mnt_metric] >= self.mnt_best) | |
except KeyError: | |
self.logger.warning("Warning: Metric '{}' is not found. " | |
"Model performance monitoring is disabled.".format(self.mnt_metric)) | |
self.mnt_mode = 'off' | |
improved = False | |
if improved: | |
self.mnt_best = log[self.mnt_metric] | |
not_improved_count = 0 | |
best = True | |
else: | |
not_improved_count += 1 | |
if not_improved_count > self.early_stop: | |
self.logger.info("Validation performance didn\'t improve for {} epochs. " | |
"Training stops.".format(self.early_stop)) | |
break | |
if epoch % self.save_period == 0: | |
self._save_checkpoint(epoch, save_best=best) | |
def _prepare_device(self, n_gpu_use): | |
""" | |
setup GPU device if available, move model into configured device | |
""" | |
n_gpu = torch.cuda.device_count() | |
if n_gpu_use > 0 and n_gpu == 0: | |
self.logger.warning("Warning: There\'s no GPU available on this machine," | |
"training will be performed on CPU.") | |
n_gpu_use = 0 | |
if n_gpu_use > n_gpu: | |
self.logger.warning("Warning: The number of GPU\'s configured to use is {}, but only {} are available " | |
"on this machine.".format(n_gpu_use, n_gpu)) | |
n_gpu_use = n_gpu | |
device = 'cuda:'#torch.device('cuda:' if n_gpu_use > 0 else 'cpu') | |
list_ids = list(range(n_gpu_use)) | |
return device, list_ids | |
def _save_checkpoint(self, epoch, save_best=False): | |
""" | |
Saving checkpoints | |
:param epoch: current epoch number | |
:param log: logging information of the epoch | |
:param save_best: if True, rename the saved checkpoint to 'model_best.pth' | |
""" | |
arch = type(self.model1).__name__ | |
state = { | |
'arch': arch, | |
'epoch': epoch, | |
'state_dict1': self.model1.state_dict(), | |
'state_dict2': self.model2.state_dict(), | |
'optimizer1': self.optimizer1.state_dict(), | |
'optimizer2': self.optimizer2.state_dict(), | |
'monitor_best': self.mnt_best | |
#'config': self.config | |
} | |
filename = str(self.checkpoint_dir / 'checkpoint-epoch{}.pth'.format(epoch)) | |
torch.save(state, filename) | |
self.logger.info("Saving checkpoint: {} ...".format(filename)) | |
if save_best: | |
best_path = str(self.checkpoint_dir / 'model_best.pth') | |
torch.save(state, best_path) | |
self.logger.info("Saving current best: model_best.pth at: {} ...".format(best_path)) | |
def _resume_checkpoint(self, resume_path): | |
""" | |
Resume from saved checkpoints | |
:param resume_path: Checkpoint path to be resumed | |
""" | |
resume_path = str(resume_path) | |
self.logger.info("Loading checkpoint: {} ...".format(resume_path)) | |
checkpoint = torch.load(resume_path) | |
self.start_epoch = checkpoint['epoch'] + 1 | |
self.mnt_best = checkpoint['monitor_best'] | |
# load architecture params from checkpoint. | |
if checkpoint['config']['arch'] != self.config['arch1']: | |
self.logger.warning("Warning: Architecture configuration given in config file is different from that of " | |
"checkpoint. This may yield an exception while state_dict is being loaded.") | |
self.model.load_state_dict(checkpoint['state_dict']) | |
# load optimizer state from checkpoint only when optimizer type is not changed. | |
if checkpoint['config']['optimizer']['type'] != self.config['optimizer']['type']: | |
self.logger.warning("Warning: Optimizer type given in config file is different from that of checkpoint. " | |
"Optimizer parameters not being resumed.") | |
else: | |
self.optimizer.load_state_dict(checkpoint['optimizer']) | |
self.logger.info("Checkpoint loaded. Resume training from epoch {}".format(self.start_epoch)) | |