File size: 4,817 Bytes
72fc481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import sys
import os
import numpy as np
from PIL import Image
import torchvision
from torch.utils.data.dataset import Subset
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances 
import torch
import torch.nn.functional as F
import random

def get_clothing(root, cfg_trainer, num_samples=0, train=True,

                transform_train=None, transform_val=None):

    if train:
        train_dataset = Clothing(root, cfg_trainer, num_samples=num_samples, train=train, transform=transform_train)
        val_dataset = Clothing(root, cfg_trainer, val=train, transform=transform_val)
        print(f"Train: {len(train_dataset)} Val: {len(val_dataset)}")

    else:
        train_dataset = []
        val_dataset = Clothing(root, cfg_trainer, test= (not train), transform=transform_val)
        print(f"Test: {len(val_dataset)}")

    return train_dataset, val_dataset

class Clothing(torch.utils.data.Dataset):

    def __init__(self, root, cfg_trainer, num_samples=0, train=False, val=False, test=False, transform=None, num_class = 14):
        self.cfg_trainer = cfg_trainer
        self.root = root
        self.transform = transform
        self.train_labels = {}
        self.test_labels = {}
        self.val_labels = {}  

        self.train  = train
        self.val = val
        self.test = test

        with open('%s/noisy_label_kv.txt'%self.root,'r') as f:
            lines = f.read().splitlines()
            for l in lines:
                entry = l.split()           
                img_path = '%s/'%self.root+entry[0][7:]
                self.train_labels[img_path] = int(entry[1])                         
        with open('%s/clean_label_kv.txt'%self.root,'r') as f:
            lines = f.read().splitlines()
            for l in lines:
                entry = l.split()           
                img_path = '%s/'%self.root+entry[0][7:]
                self.test_labels[img_path] = int(entry[1])  

        if train:          
            train_imgs=[]
            with open('%s/noisy_train_key_list.txt'%self.root,'r') as f:
                lines = f.read().splitlines()
                for i , l in enumerate(lines):
                    img_path = '%s/'%self.root+l[7:]
                    train_imgs.append((i,img_path)) 
            self.num_raw_example = len(train_imgs)                              
            random.shuffle(train_imgs)
            class_num = torch.zeros(num_class)
            self.train_imgs = []
            for id_raw, impath in train_imgs:
                label = self.train_labels[impath] 
                if class_num[label]<(num_samples/14) and len(self.train_imgs)<num_samples:
                    self.train_imgs.append((id_raw,impath))
                    class_num[label]+=1
            random.shuffle(self.train_imgs)  

        elif test:
            self.test_imgs = []
            with open('%s/clean_test_key_list.txt'%self.root,'r') as f:
                lines = f.read().splitlines()
                for l in lines:
                    img_path = '%s/'%self.root+l[7:]
                    self.test_imgs.append(img_path)            
        elif val:
            self.val_imgs = []
            with open('%s/clean_val_key_list.txt'%self.root,'r') as f:
                lines = f.read().splitlines()
                for l in lines:
                    img_path = '%s/'%self.root+l[7:]
                    self.val_imgs.append(img_path)

        

    def __getitem__(self, index):
        if self.train:
            id_raw, img_path = self.train_imgs[index]
            target = self.train_labels[img_path]     
        elif self.val:
            img_path = self.val_imgs[index]
            target = self.test_labels[img_path]   
        elif self.test:
            img_path = self.test_imgs[index]
            target = self.test_labels[img_path] 
        image = Image.open(img_path).convert('RGB')
        if self.train:
            img0 = self.transform(image)
        
        if self.test or self.val:
            img = self.transform(image)
            return img, target, index, target
        else:
            return img0, target, id_raw, target



    def __len__(self):
        if self.test:
            return len(self.test_imgs)
        if self.val:
            return len(self.val_imgs)
        else:
            return len(self.train_imgs) 


    def flist_reader(self, flist):
        imlist = []
        with open(flist, 'r') as rf:
            for line in rf.readlines():
                row = line.split(" ")
                impath =  self.root + row[0]
                imlabel = float(row[1].replace('\n',''))
                imlist.append((impath, int(imlabel)))
        return imlist