File size: 8,028 Bytes
72fc481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import sys

import numpy as np
from PIL import Image
import torchvision
from torch.utils.data.dataset import Subset
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances 
import torch
import torch.nn.functional as F
import random 
import json
import os


def get_cifar10(root, cfg_trainer, train=True,

                transform_train=None, transform_val=None,

                download=False, noise_file = ''):
    base_dataset = torchvision.datasets.CIFAR10(root, train=train, download=download)
    if train:
        train_idxs, val_idxs = train_val_split(base_dataset.targets)
        train_dataset = CIFAR10_train(root, cfg_trainer, train_idxs, train=True, transform=transform_train)
        val_dataset = CIFAR10_val(root, cfg_trainer, val_idxs, train=train, transform=transform_val)
        if cfg_trainer['asym']:
            train_dataset.asymmetric_noise()
            val_dataset.asymmetric_noise()
        else:
            train_dataset.symmetric_noise()
            val_dataset.symmetric_noise()
        
        print(f"Train: {len(train_idxs)} Val: {len(val_idxs)}")  # Train: 45000 Val: 5000
    else:
        train_dataset = []
        val_dataset = CIFAR10_val(root, cfg_trainer, None, train=train, transform=transform_val)
        print(f"Test: {len(val_dataset)}")
    
    return train_dataset, val_dataset


def train_val_split(base_dataset: torchvision.datasets.CIFAR10):
    num_classes = 10
    base_dataset = np.array(base_dataset)
    train_n = int(len(base_dataset) * 0.9 / num_classes)
    train_idxs = []
    val_idxs = []

    for i in range(num_classes):
        idxs = np.where(base_dataset == i)[0]
        np.random.shuffle(idxs)
        train_idxs.extend(idxs[:train_n])
        val_idxs.extend(idxs[train_n:])
    np.random.shuffle(train_idxs)
    np.random.shuffle(val_idxs)

    return train_idxs, val_idxs


class CIFAR10_train(torchvision.datasets.CIFAR10):
    def __init__(self, root, cfg_trainer, indexs, train=True,

                 transform=None, target_transform=None,

                 download=False):
        super(CIFAR10_train, self).__init__(root, train=train,
                                            transform=transform, target_transform=target_transform,
                                            download=download)
        self.num_classes = 10
        self.cfg_trainer = cfg_trainer
        self.train_data = self.data[indexs]#self.train_data[indexs]
        self.train_labels = np.array(self.targets)[indexs]#np.array(self.train_labels)[indexs]
        self.indexs = indexs
        self.prediction = np.zeros((len(self.train_data), self.num_classes, self.num_classes), dtype=np.float32)
        self.noise_indx = []
        #self.all_refs_encoded = torch.zeros(self.num_classes,self.num_ref,1024, dtype=np.float32)

    def symmetric_noise(self):
        self.train_labels_gt = self.train_labels.copy()
        #np.random.seed(seed=888)
        indices = np.random.permutation(len(self.train_data))
        for i, idx in enumerate(indices):
            if i < self.cfg_trainer['percent'] * len(self.train_data):
                self.noise_indx.append(idx)
                self.train_labels[idx] = np.random.randint(self.num_classes, dtype=np.int32)

    def asymmetric_noise(self):
        self.train_labels_gt = self.train_labels.copy()
        for i in range(self.num_classes):
            indices = np.where(self.train_labels == i)[0]
            np.random.shuffle(indices)
            for j, idx in enumerate(indices):
                if j < self.cfg_trainer['percent'] * len(indices):
                    self.noise_indx.append(idx)
                    # truck -> automobile
                    if i == 9:
                        self.train_labels[idx] = 1
                    # bird -> airplane
                    elif i == 2:
                        self.train_labels[idx] = 0
                    # cat -> dog
                    elif i == 3:
                        self.train_labels[idx] = 5
                    # dog -> cat
                    elif i == 5:
                        self.train_labels[idx] = 3
                    # deer -> horse
                    elif i == 4:
                        self.train_labels[idx] = 7
                


            

    def __getitem__(self, index):
        """

        Args:

            index (int): Index



        Returns:

            tuple: (image, target) where target is index of the target class.

        """
        img, target, target_gt = self.train_data[index], self.train_labels[index], self.train_labels_gt[index]


        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img)


        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img,target, index, target_gt

    def __len__(self):
        return len(self.train_data)



class CIFAR10_val(torchvision.datasets.CIFAR10):

    def __init__(self, root, cfg_trainer, indexs, train=True,

                 transform=None, target_transform=None,

                 download=False):
        super(CIFAR10_val, self).__init__(root, train=train,
                                          transform=transform, target_transform=target_transform,
                                          download=download)

        # self.train_data = self.data[indexs]
        # self.train_labels = np.array(self.targets)[indexs]
        self.num_classes = 10
        self.cfg_trainer = cfg_trainer
        if train:
            self.train_data = self.data[indexs]
            self.train_labels = np.array(self.targets)[indexs]
        else:
            self.train_data = self.data
            self.train_labels = np.array(self.targets)
        self.train_labels_gt = self.train_labels.copy()
    def symmetric_noise(self):
        
        indices = np.random.permutation(len(self.train_data))
        for i, idx in enumerate(indices):
            if i < self.cfg_trainer['percent'] * len(self.train_data):
                self.train_labels[idx] = np.random.randint(self.num_classes, dtype=np.int32)

    def asymmetric_noise(self):
        for i in range(self.num_classes):
            indices = np.where(self.train_labels == i)[0]
            np.random.shuffle(indices)
            for j, idx in enumerate(indices):
                if j < self.cfg_trainer['percent'] * len(indices):
                    # truck -> automobile
                    if i == 9:
                        self.train_labels[idx] = 1
                    # bird -> airplane
                    elif i == 2:
                        self.train_labels[idx] = 0
                    # cat -> dog
                    elif i == 3:
                        self.train_labels[idx] = 5
                    # dog -> cat
                    elif i == 5:
                        self.train_labels[idx] = 3
                    # deer -> horse
                    elif i == 4:
                        self.train_labels[idx] = 7
    def __len__(self):
        return len(self.train_data)


    def __getitem__(self, index):
        """

        Args:

            index (int): Index



        Returns:

            tuple: (image, target) where target is index of the target class.

        """
        img, target, target_gt = self.train_data[index], self.train_labels[index], self.train_labels_gt[index]


        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img)


        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target, index, target_gt