File size: 10,848 Bytes
72fc481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import torch
from tqdm import tqdm
from typing import List
from torchvision.utils import make_grid
from base import BaseTrainer
from utils import inf_loop
import sys
from sklearn.mixture import GaussianMixture

class Trainer(BaseTrainer):
    """

    Trainer class



    Note:

        Inherited from BaseTrainer.

    """
    def __init__(self, model, train_criterion, metrics, optimizer, config, data_loader,

                 valid_data_loader=None, test_data_loader=None, lr_scheduler=None, len_epoch=None, val_criterion=None):
        super().__init__(model, train_criterion, metrics, optimizer, config, val_criterion)
        self.config = config
        self.data_loader = data_loader
        if len_epoch is None:
            # epoch-based training
            self.len_epoch = len(self.data_loader)
        else:
            # iteration-based training
            self.data_loader = inf_loop(data_loader)
            self.len_epoch = len_epoch
        self.valid_data_loader = valid_data_loader

        self.test_data_loader = test_data_loader
        self.do_validation = self.valid_data_loader is not None
        self.do_test = self.test_data_loader is not None
        self.lr_scheduler = lr_scheduler
        self.log_step = int(np.sqrt(data_loader.batch_size))
        self.train_loss_list: List[float] = []
        self.val_loss_list: List[float] = []
        self.test_loss_list: List[float] = []
        #Visdom visualization
        

    def _eval_metrics(self, output, label):
        acc_metrics = np.zeros(len(self.metrics))
        for i, metric in enumerate(self.metrics):
            acc_metrics[i] += metric(output, label)
            self.writer.add_scalar('{}'.format(metric.__name__), acc_metrics[i])
        return acc_metrics

    def _train_epoch(self, epoch):
        """

        Training logic for an epoch



        :param epoch: Current training epoch.

        :return: A log that contains all information you want to save.



        Note:

            If you have additional information to record, for example:

                > additional_log = {"x": x, "y": y}

            merge it with log before return. i.e.

                > log = {**log, **additional_log}

                > return log



            The metrics in log must have the key 'metrics'.

        """
        self.model.train()

        total_loss = 0
        total_metrics = np.zeros(len(self.metrics))

        with tqdm(self.data_loader) as progress:
            for batch_idx, (data, label, indexs, _) in enumerate(progress):
                progress.set_description_str(f'Train epoch {epoch}')
                
                data, label = data.to(self.device), label.long().to(self.device)
                
                output = self.model(data)

                loss = self.train_criterion(indexs.cpu().detach().numpy().tolist(), output, label)
                self.optimizer.zero_grad()
                loss.backward()



                
                self.optimizer.step()

                self.writer.set_step((epoch - 1) * self.len_epoch + batch_idx)
                self.writer.add_scalar('loss', loss.item())
                self.train_loss_list.append(loss.item())
                total_loss += loss.item()
                total_metrics += self._eval_metrics(output, label)


                if batch_idx % self.log_step == 0:
                    progress.set_postfix_str(' {} Loss: {:.6f}'.format(
                        self._progress(batch_idx),
                        loss.item()))
                    self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True))

                if batch_idx == self.len_epoch:
                    break
        # if hasattr(self.data_loader, 'run'):
        #     self.data_loader.run()

        log = {
            'loss': total_loss / self.len_epoch,
            'metrics': (total_metrics / self.len_epoch).tolist(),
            'learning rate': self.lr_scheduler.get_lr()
        }


        if self.do_validation:
            val_log = self._valid_epoch(epoch)
            log.update(val_log)
        if self.do_test:
            test_log, test_meta = self._test_epoch(epoch)
            log.update(test_log)
        else: 
            test_meta = [0,0]


        if self.lr_scheduler is not None:
            self.lr_scheduler.step()

        return log


    def _valid_epoch(self, epoch):
        """

        Validate after training an epoch



        :return: A log that contains information about validation



        Note:

            The validation metrics in log must have the key 'val_metrics'.

        """
        self.model.eval()

        total_val_loss = 0
        total_val_metrics = np.zeros(len(self.metrics))
        with torch.no_grad():
            with tqdm(self.valid_data_loader) as progress:
                for batch_idx, (data, label, _, _) in enumerate(progress):
                    progress.set_description_str(f'Valid epoch {epoch}')
                    data, label = data.to(self.device), label.to(self.device)
                    output = self.model(data)
                    loss = self.val_criterion(output, label)

                    self.writer.set_step((epoch - 1) * len(self.valid_data_loader) + batch_idx, 'valid')
                    self.writer.add_scalar('loss', loss.item())
                    self.val_loss_list.append(loss.item())
                    total_val_loss += loss.item()
                    total_val_metrics += self._eval_metrics(output, label)
                    self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True))

        # add histogram of model parameters to the tensorboard
        for name, p in self.model.named_parameters():
            self.writer.add_histogram(name, p, bins='auto')

        return {
            'val_loss': total_val_loss / len(self.valid_data_loader),
            'val_metrics': (total_val_metrics / len(self.valid_data_loader)).tolist()
        }

    def _test_epoch(self, epoch):
        """

        Test after training an epoch



        :return: A log that contains information about test



        Note:

            The Test metrics in log must have the key 'val_metrics'.

        """
        self.model.eval()
        total_test_loss = 0
        total_test_metrics = np.zeros(len(self.metrics))
        results = np.zeros((len(self.test_data_loader.dataset), self.config['num_classes']), dtype=np.float32)
        tar_ = np.zeros((len(self.test_data_loader.dataset),), dtype=np.float32)
        with torch.no_grad():
            with tqdm(self.test_data_loader) as progress:
                for batch_idx, (data, label,indexs,_) in enumerate(progress):
                    progress.set_description_str(f'Test epoch {epoch}')
                    data, label = data.to(self.device), label.to(self.device)
                    output = self.model(data)
                    
                    loss = self.val_criterion(output, label)

                    self.writer.set_step((epoch - 1) * len(self.test_data_loader) + batch_idx, 'test')
                    self.writer.add_scalar('loss', loss.item())
                    self.test_loss_list.append(loss.item())
                    total_test_loss += loss.item()
                    total_test_metrics += self._eval_metrics(output, label)
                    self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True))

                    results[indexs.cpu().detach().numpy().tolist()] = output.cpu().detach().numpy().tolist()
                    tar_[indexs.cpu().detach().numpy().tolist()] = label.cpu().detach().numpy().tolist()

        # add histogram of model parameters to the tensorboard
        for name, p in self.model.named_parameters():
            self.writer.add_histogram(name, p, bins='auto')

        return {
            'test_loss': total_test_loss / len(self.test_data_loader),
            'test_metrics': (total_test_metrics / len(self.test_data_loader)).tolist()
        },[results,tar_]


    def _warmup_epoch(self, epoch):
        total_loss = 0
        total_metrics = np.zeros(len(self.metrics))
        self.model.train()

        data_loader = self.data_loader#self.loader.run('warmup')


        with tqdm(data_loader) as progress:
            for batch_idx, (data, label, _, indexs , _) in enumerate(progress):
                progress.set_description_str(f'Warm up epoch {epoch}')

                data, label = data.to(self.device), label.long().to(self.device)

                self.optimizer.zero_grad()
                output = self.model(data)
                out_prob = torch.nn.functional.softmax(output).data.detach()

                self.train_criterion.update_hist(indexs.cpu().detach().numpy().tolist(), out_prob)

                loss = torch.nn.functional.cross_entropy(output, label)

                loss.backward() 
                self.optimizer.step()

                self.writer.set_step((epoch - 1) * self.len_epoch + batch_idx)
                self.writer.add_scalar('loss', loss.item())
                self.train_loss_list.append(loss.item())
                total_loss += loss.item()
                total_metrics += self._eval_metrics(output, label)


                if batch_idx % self.log_step == 0:
                    progress.set_postfix_str(' {} Loss: {:.6f}'.format(
                        self._progress(batch_idx),
                        loss.item()))
                    self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True))

                if batch_idx == self.len_epoch:
                    break
        if hasattr(self.data_loader, 'run'):
            self.data_loader.run()
        log = {
            'loss': total_loss / self.len_epoch,
            'noise detection rate' : 0.0,
            'metrics': (total_metrics / self.len_epoch).tolist(),
            'learning rate': self.lr_scheduler.get_lr()
        }

        if self.do_validation:
            val_log = self._valid_epoch(epoch)
            log.update(val_log)
        if self.do_test:
            test_log, test_meta = self._test_epoch(epoch)
            log.update(test_log)
        else: 
            test_meta = [0,0]

        return log


    def _progress(self, batch_idx):
        base = '[{}/{} ({:.0f}%)]'
        if hasattr(self.data_loader, 'n_samples'):
            current = batch_idx * self.data_loader.batch_size
            total = self.data_loader.n_samples
        else:
            current = batch_idx
            total = self.len_epoch
        return base.format(current, total, 100.0 * current / total)