File size: 5,034 Bytes
72fc481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import collections
import sys
import requests
import socket
import torch
import mlflow
import mlflow.pytorch
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
from collections import OrderedDict
import random



def log_params(conf: OrderedDict, parent_key: str = None):
    for key, value in conf.items():
        if parent_key is not None:
            combined_key = f'{parent_key}-{key}'
        else:
            combined_key = key

        if not isinstance(value, OrderedDict):
            mlflow.log_param(combined_key, value)
        else:
            log_params(value, combined_key)


def main(config: ConfigParser):

    logger = config.get_logger('train')

    data_loader = getattr(module_data, config['data_loader']['type'])(
        config['data_loader']['args']['data_dir'],
        batch_size= config['data_loader']['args']['batch_size'],
        shuffle=config['data_loader']['args']['shuffle'],
        validation_split=config['data_loader']['args']['validation_split'],
        num_batches=config['data_loader']['args']['num_batches'],
        training=True,
        num_workers=config['data_loader']['args']['num_workers'],
        pin_memory=config['data_loader']['args']['pin_memory'] 
    )


    valid_data_loader = data_loader.split_validation()

    # test_data_loader = None

    test_data_loader = getattr(module_data, config['data_loader']['type'])(
        config['data_loader']['args']['data_dir'],
        batch_size=128,
        shuffle=False,
        validation_split=0.0,
        training=False,
        num_workers=2
    ).split_validation()


    # build model architecture, then print to console
    model = config.initialize('arch', module_arch)

    # get function handles of loss and metrics
    logger.info(config.config)
    if hasattr(data_loader.dataset, 'num_raw_example'):
        num_examp = data_loader.dataset.num_raw_example
    else:
        num_examp = len(data_loader.dataset)

    train_loss = getattr(module_loss, config['train_loss']['type'])(num_examp=num_examp, num_classes=config['num_classes'],
                                                            beta=config['train_loss']['args']['beta'])

    val_loss = getattr(module_loss, config['val_loss'])
    metrics = [getattr(module_metric, met) for met in config['metrics']]

    # build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
    trainable_params = filter(lambda p: p.requires_grad, model.parameters())

    optimizer = config.initialize('optimizer', torch.optim, [{'params': trainable_params}])

    lr_scheduler = config.initialize('lr_scheduler', torch.optim.lr_scheduler, optimizer)

    trainer = Trainer(model, train_loss, metrics, optimizer,
                      config=config,
                      data_loader=data_loader,
                      valid_data_loader=valid_data_loader,
                      test_data_loader=test_data_loader,
                      lr_scheduler=lr_scheduler,
                      val_criterion=val_loss)

    trainer.train()
    logger = config.get_logger('trainer', config['trainer']['verbosity'])
    cfg_trainer = config['trainer']


if __name__ == '__main__':
    args = argparse.ArgumentParser(description='PyTorch Template')
    args.add_argument('-c', '--config', default=None, type=str,
                      help='config file path (default: None)')
    args.add_argument('-r', '--resume', default=None, type=str,
                      help='path to latest checkpoint (default: None)')
    args.add_argument('-d', '--device', default=None, type=str,
                      help='indices of GPUs to enable (default: all)')

    # custom cli options to modify configuration from default values given in json file.
    CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
    options = [
        CustomArgs(['--lr', '--learning_rate'], type=float, target=('optimizer', 'args', 'lr')),
        CustomArgs(['--bs', '--batch_size'], type=int, target=('data_loader', 'args', 'batch_size')),
        CustomArgs(['--lamb', '--lamb'], type=float, target=('train_loss', 'args', 'lambda')),
        CustomArgs(['--beta', '--beta'], type=float, target=('train_loss', 'args', 'beta')),
        CustomArgs(['--percent', '--percent'], type=float, target=('trainer', 'percent')),
        CustomArgs(['--asym', '--asym'], type=bool, target=('trainer', 'asym')),
        CustomArgs(['--name', '--exp_name'], type=str, target=('name',)),
        CustomArgs(['--seed', '--seed'], type=int, target=('seed',))
    ]
    config = ConfigParser.get_instance(args, options)

    random.seed(config['seed'])
    torch.manual_seed(config['seed'])
    torch.cuda.manual_seed_all(config['seed'])
    main(config)