Spaces:
Configuration error
Configuration error
File size: 5,034 Bytes
72fc481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import argparse
import collections
import sys
import requests
import socket
import torch
import mlflow
import mlflow.pytorch
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
from collections import OrderedDict
import random
def log_params(conf: OrderedDict, parent_key: str = None):
for key, value in conf.items():
if parent_key is not None:
combined_key = f'{parent_key}-{key}'
else:
combined_key = key
if not isinstance(value, OrderedDict):
mlflow.log_param(combined_key, value)
else:
log_params(value, combined_key)
def main(config: ConfigParser):
logger = config.get_logger('train')
data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size= config['data_loader']['args']['batch_size'],
shuffle=config['data_loader']['args']['shuffle'],
validation_split=config['data_loader']['args']['validation_split'],
num_batches=config['data_loader']['args']['num_batches'],
training=True,
num_workers=config['data_loader']['args']['num_workers'],
pin_memory=config['data_loader']['args']['pin_memory']
)
valid_data_loader = data_loader.split_validation()
# test_data_loader = None
test_data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size=128,
shuffle=False,
validation_split=0.0,
training=False,
num_workers=2
).split_validation()
# build model architecture, then print to console
model = config.initialize('arch', module_arch)
# get function handles of loss and metrics
logger.info(config.config)
if hasattr(data_loader.dataset, 'num_raw_example'):
num_examp = data_loader.dataset.num_raw_example
else:
num_examp = len(data_loader.dataset)
train_loss = getattr(module_loss, config['train_loss']['type'])(num_examp=num_examp, num_classes=config['num_classes'],
beta=config['train_loss']['args']['beta'])
val_loss = getattr(module_loss, config['val_loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.initialize('optimizer', torch.optim, [{'params': trainable_params}])
lr_scheduler = config.initialize('lr_scheduler', torch.optim.lr_scheduler, optimizer)
trainer = Trainer(model, train_loss, metrics, optimizer,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
test_data_loader=test_data_loader,
lr_scheduler=lr_scheduler,
val_criterion=val_loss)
trainer.train()
logger = config.get_logger('trainer', config['trainer']['verbosity'])
cfg_trainer = config['trainer']
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target=('optimizer', 'args', 'lr')),
CustomArgs(['--bs', '--batch_size'], type=int, target=('data_loader', 'args', 'batch_size')),
CustomArgs(['--lamb', '--lamb'], type=float, target=('train_loss', 'args', 'lambda')),
CustomArgs(['--beta', '--beta'], type=float, target=('train_loss', 'args', 'beta')),
CustomArgs(['--percent', '--percent'], type=float, target=('trainer', 'percent')),
CustomArgs(['--asym', '--asym'], type=bool, target=('trainer', 'asym')),
CustomArgs(['--name', '--exp_name'], type=str, target=('name',)),
CustomArgs(['--seed', '--seed'], type=int, target=('seed',))
]
config = ConfigParser.get_instance(args, options)
random.seed(config['seed'])
torch.manual_seed(config['seed'])
torch.cuda.manual_seed_all(config['seed'])
main(config)
|