Upload folder using huggingface_hub
Browse files- dataset.py +1 -0
- evaluate_cli.py +828 -0
- inference.py +233 -112
- llm_as_judge.py +4 -4
- metric.py +1 -0
- metrics.py +106 -95
- parsing_utils.py +2 -2
- processors.py +70 -16
- version.py +1 -1
dataset.py
CHANGED
@@ -20,6 +20,7 @@ from .dialog_operators import __file__ as _
|
|
20 |
from .dict_utils import __file__ as _
|
21 |
from .error_utils import __file__ as _
|
22 |
from .eval_utils import __file__ as _
|
|
|
23 |
from .file_utils import __file__ as _
|
24 |
from .formats import __file__ as _
|
25 |
from .fusion import __file__ as _
|
|
|
20 |
from .dict_utils import __file__ as _
|
21 |
from .error_utils import __file__ as _
|
22 |
from .eval_utils import __file__ as _
|
23 |
+
from .evaluate_cli import __file__ as _
|
24 |
from .file_utils import __file__ as _
|
25 |
from .formats import __file__ as _
|
26 |
from .fusion import __file__ as _
|
evaluate_cli.py
ADDED
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# evaluate_cli.py
|
2 |
+
import argparse
|
3 |
+
import importlib.metadata
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import platform
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
from datetime import datetime
|
11 |
+
from functools import partial
|
12 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
13 |
+
|
14 |
+
from datasets import Dataset as HFDataset
|
15 |
+
|
16 |
+
from . import evaluate, get_logger, load_dataset
|
17 |
+
from .artifact import UnitxtArtifactNotFoundError
|
18 |
+
from .benchmark import Benchmark
|
19 |
+
|
20 |
+
# Use HFAutoModelInferenceEngine for local models
|
21 |
+
from .inference import (
|
22 |
+
CrossProviderInferenceEngine,
|
23 |
+
HFAutoModelInferenceEngine,
|
24 |
+
InferenceEngine,
|
25 |
+
)
|
26 |
+
from .metric_utils import EvaluationResults
|
27 |
+
from .parsing_utils import parse_key_equals_value_string_to_dict
|
28 |
+
from .settings_utils import settings
|
29 |
+
from .standard import DatasetRecipe
|
30 |
+
|
31 |
+
# Define logger early so it can be used in initial error handling
|
32 |
+
# Basic config for initial messages, will be reconfigured in main()
|
33 |
+
logger = get_logger()
|
34 |
+
|
35 |
+
|
36 |
+
def try_parse_json(value: str) -> Union[str, dict, None]:
|
37 |
+
"""Attempts to parse a string as JSON or key=value pairs.
|
38 |
+
|
39 |
+
Returns the original string if parsing fails
|
40 |
+
and the string doesn't look like JSON/kv pairs.
|
41 |
+
Raises ArgumentTypeError if it looks like JSON but is invalid.
|
42 |
+
"""
|
43 |
+
if value is None:
|
44 |
+
return None
|
45 |
+
try:
|
46 |
+
# Handle simple key-value pairs like "key=value,key2=value2"
|
47 |
+
if "=" in value and "{" not in value:
|
48 |
+
parsed_dict = parse_key_equals_value_string_to_dict(value)
|
49 |
+
if parsed_dict:
|
50 |
+
return parsed_dict
|
51 |
+
|
52 |
+
# Attempt standard JSON parsing
|
53 |
+
return json.loads(value)
|
54 |
+
|
55 |
+
except json.JSONDecodeError as e:
|
56 |
+
if value.strip().startswith("{") or value.strip().startswith("["):
|
57 |
+
raise argparse.ArgumentTypeError(
|
58 |
+
f"Invalid JSON: '{value}'. Hint: Use double quotes for JSON strings and check syntax."
|
59 |
+
) from e
|
60 |
+
return value # Return as string if not JSON-like
|
61 |
+
except Exception as e:
|
62 |
+
logger.error(f"Error parsing argument '{value}': {e}")
|
63 |
+
raise argparse.ArgumentTypeError(f"Could not parse argument: '{value}'") from e
|
64 |
+
|
65 |
+
|
66 |
+
def setup_parser() -> argparse.ArgumentParser:
|
67 |
+
"""Sets up the argument parser."""
|
68 |
+
parser = argparse.ArgumentParser(
|
69 |
+
formatter_class=argparse.RawTextHelpFormatter,
|
70 |
+
description="CLI utility for running evaluations with unitxt.",
|
71 |
+
)
|
72 |
+
|
73 |
+
# --- Task/Dataset Arguments ---
|
74 |
+
parser.add_argument(
|
75 |
+
"--tasks", # Changed to plural to better reflect it holds a list
|
76 |
+
"-t",
|
77 |
+
dest="tasks", # Explicitly set the attribute name to 'tasks'
|
78 |
+
type=partial(str.split, sep="+"), # Use the custom function for type conversion
|
79 |
+
required=True,
|
80 |
+
help="Plus-separated (+) list of Unitxt task/dataset identifier strings.\n"
|
81 |
+
"Each task format: 'card=<card_ref>,template=<template_ref>,...'\n"
|
82 |
+
"Example: 'card=cards.mmlu,t=t.mmlu.all+card=cards.hellaswag,t=t.hellaswag.no'",
|
83 |
+
)
|
84 |
+
|
85 |
+
parser.add_argument(
|
86 |
+
"--split",
|
87 |
+
type=str,
|
88 |
+
default="test",
|
89 |
+
help="Dataset split to use (e.g., 'train', 'validation', 'test'). Default: 'test'.",
|
90 |
+
)
|
91 |
+
parser.add_argument(
|
92 |
+
"--num_fewshots",
|
93 |
+
type=int,
|
94 |
+
default=None,
|
95 |
+
help="number of fewshots to use",
|
96 |
+
)
|
97 |
+
parser.add_argument(
|
98 |
+
"--limit",
|
99 |
+
"-L",
|
100 |
+
type=int,
|
101 |
+
default=None,
|
102 |
+
metavar="N",
|
103 |
+
help="Limit the number of examples per task/dataset.",
|
104 |
+
)
|
105 |
+
|
106 |
+
parser.add_argument(
|
107 |
+
"--batch_size",
|
108 |
+
"-b",
|
109 |
+
type=int,
|
110 |
+
default=1,
|
111 |
+
help="Batch size for use in inference when selected model is hf. Default 1",
|
112 |
+
)
|
113 |
+
|
114 |
+
# --- Model Arguments (Explicit Types) ---
|
115 |
+
parser.add_argument(
|
116 |
+
"--model",
|
117 |
+
"-m",
|
118 |
+
type=str,
|
119 |
+
default="hf",
|
120 |
+
choices=["hf", "cross_provider"],
|
121 |
+
help="Specifies the model type/engine.\n"
|
122 |
+
"- 'hf': Local Hugging Face model via HFAutoModel (default). Requires 'pretrained=...' in --model_args.\n"
|
123 |
+
"- 'cross_provider': Remote model via CrossProviderInferenceEngine. Requires 'model_name=...' in --model_args.",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--model_args",
|
127 |
+
"-a",
|
128 |
+
type=try_parse_json,
|
129 |
+
default={},
|
130 |
+
help="Comma separated string or JSON formatted arguments for the model/inference engine.\n"
|
131 |
+
"Examples:\n"
|
132 |
+
"- For --model hf (default): 'pretrained=meta-llama/Llama-3.1-8B-Instruct,torch_dtype=bfloat16,device=cuda'\n"
|
133 |
+
" (Note: 'pretrained' key is REQUIRED. Other args like 'torch_dtype', 'device', generation params are passed too)\n"
|
134 |
+
"- For --model generic_remote: 'model_name=llama-3-3-70b-instruct,max_tokens=256,temperature=0.7'\n"
|
135 |
+
" (Note: 'model_name' key is REQUIRED)\n"
|
136 |
+
'- JSON format: \'{"pretrained": "my_model", "torch_dtype": "float32"}\' or \'{"model_name": "openai/gpt-4o"}\'',
|
137 |
+
)
|
138 |
+
|
139 |
+
parser.add_argument(
|
140 |
+
"--gen_kwargs",
|
141 |
+
type=try_parse_json,
|
142 |
+
default=None,
|
143 |
+
help=(
|
144 |
+
"Comma delimited string for model generation on greedy_until tasks,"
|
145 |
+
""" e.g. temperature=0,top_p=0.1."""
|
146 |
+
),
|
147 |
+
)
|
148 |
+
|
149 |
+
parser.add_argument(
|
150 |
+
"--chat_template_kwargs",
|
151 |
+
type=try_parse_json,
|
152 |
+
default=None,
|
153 |
+
help=(
|
154 |
+
"Comma delimited string for tokenizer kwargs"
|
155 |
+
"e.g. thinking=True (https://github.com/huggingface/transformers/blob/9a1c1fe7edaefdb25ab37116a979832df298d6ea/src/transformers/tokenization_utils_base.py#L1542)"
|
156 |
+
),
|
157 |
+
)
|
158 |
+
|
159 |
+
# --- Output and Logging Arguments ---
|
160 |
+
parser.add_argument(
|
161 |
+
"--output_path",
|
162 |
+
"-o",
|
163 |
+
type=str,
|
164 |
+
default=".",
|
165 |
+
help="Directory to save evaluation results and logs. Default: current directory.",
|
166 |
+
)
|
167 |
+
parser.add_argument(
|
168 |
+
"--output_file_prefix",
|
169 |
+
type=str,
|
170 |
+
default="evaluation_results",
|
171 |
+
help="Prefix for the output JSON file names. Default: 'evaluation_results'.",
|
172 |
+
)
|
173 |
+
parser.add_argument(
|
174 |
+
"--log_samples",
|
175 |
+
"-s",
|
176 |
+
action="store_true",
|
177 |
+
default=False,
|
178 |
+
help="If True, save individual predictions and scores to a separate JSON file.",
|
179 |
+
)
|
180 |
+
parser.add_argument(
|
181 |
+
"--verbosity",
|
182 |
+
"-v",
|
183 |
+
type=str.upper,
|
184 |
+
default="INFO",
|
185 |
+
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
186 |
+
help="Controls logging verbosity level. Default: INFO.",
|
187 |
+
)
|
188 |
+
|
189 |
+
parser.add_argument(
|
190 |
+
"--apply_chat_template",
|
191 |
+
action="store_true",
|
192 |
+
default=False,
|
193 |
+
)
|
194 |
+
|
195 |
+
# --- Unitxt Settings ---
|
196 |
+
parser.add_argument(
|
197 |
+
"--trust_remote_code",
|
198 |
+
action="store_true",
|
199 |
+
default=False,
|
200 |
+
help="Allow execution of unverified code from the HuggingFace Hub (used by datasets/unitxt).",
|
201 |
+
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--disable_hf_cache",
|
204 |
+
action="store_true",
|
205 |
+
default=False,
|
206 |
+
help="Disable HuggingFace datasets caching.",
|
207 |
+
)
|
208 |
+
parser.add_argument(
|
209 |
+
"--cache_dir",
|
210 |
+
type=str,
|
211 |
+
default=None,
|
212 |
+
help="Directory for HuggingFace datasets cache (overrides default).",
|
213 |
+
)
|
214 |
+
|
215 |
+
return parser
|
216 |
+
|
217 |
+
|
218 |
+
def setup_logging(verbosity: str) -> None:
|
219 |
+
"""Configures logging based on verbosity level."""
|
220 |
+
logging.basicConfig(
|
221 |
+
level=verbosity,
|
222 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
223 |
+
force=True, # Ensures reconfiguration works if basicConfig was called before
|
224 |
+
)
|
225 |
+
# Re-get the logger instance after basicConfig is set
|
226 |
+
global logger
|
227 |
+
logger = get_logger()
|
228 |
+
logger.setLevel(verbosity)
|
229 |
+
|
230 |
+
|
231 |
+
def prepare_output_paths(output_path: str, prefix: str) -> Tuple[str, str]:
|
232 |
+
"""Creates output directory and defines file paths.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
output_path (str): The directory where output files will be saved.
|
236 |
+
prefix (str): The prefix for the output file names.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
Tuple[str, str]: A tuple containing the path for the results summary file
|
240 |
+
and the path for the detailed samples file.
|
241 |
+
"""
|
242 |
+
os.makedirs(output_path, exist_ok=True)
|
243 |
+
results_file_path = os.path.join(output_path, f"{prefix}.json")
|
244 |
+
samples_file_path = os.path.join(output_path, f"{prefix}_samples.json")
|
245 |
+
return results_file_path, samples_file_path
|
246 |
+
|
247 |
+
|
248 |
+
def configure_unitxt_settings(args: argparse.Namespace):
|
249 |
+
"""Configures unitxt settings and returns a context manager.
|
250 |
+
|
251 |
+
Args:
|
252 |
+
args (argparse.Namespace): Parsed command-line arguments.
|
253 |
+
|
254 |
+
Returns:
|
255 |
+
ContextManager: A context manager for applying unitxt settings.
|
256 |
+
"""
|
257 |
+
unitxt_settings_dict = {
|
258 |
+
"disable_hf_datasets_cache": args.disable_hf_cache,
|
259 |
+
"allow_unverified_code": args.trust_remote_code,
|
260 |
+
}
|
261 |
+
if args.cache_dir:
|
262 |
+
unitxt_settings_dict["hf_cache_dir"] = args.cache_dir
|
263 |
+
# Also set environment variable as some HF parts might read it directly
|
264 |
+
os.environ["HF_DATASETS_CACHE"] = args.cache_dir
|
265 |
+
os.environ["HF_HOME"] = args.cache_dir
|
266 |
+
logger.info(f"Set HF_DATASETS_CACHE to: {args.cache_dir}")
|
267 |
+
|
268 |
+
if args.disable_hf_cache:
|
269 |
+
os.environ["UNITXT_DISABLE_HF_DATASETS_CACHE"] = "True"
|
270 |
+
|
271 |
+
logger.info(f"Applying unitxt settings: {unitxt_settings_dict}")
|
272 |
+
return settings.context(**unitxt_settings_dict)
|
273 |
+
|
274 |
+
|
275 |
+
def cli_load_dataset(args: argparse.Namespace) -> HFDataset:
|
276 |
+
"""Loads the dataset based on command line arguments.
|
277 |
+
|
278 |
+
Args:
|
279 |
+
args (argparse.Namespace): Parsed command-line arguments.
|
280 |
+
|
281 |
+
Returns:
|
282 |
+
HFDataset: The loaded dataset.
|
283 |
+
|
284 |
+
Raises:
|
285 |
+
UnitxtArtifactNotFoundError: If the specified card or template artifact is not found.
|
286 |
+
FileNotFoundError: If a specified file (e.g., in a local card path) is not found.
|
287 |
+
AttributeError: If there's an issue accessing attributes during loading.
|
288 |
+
ValueError: If there's a value-related error during loading (e.g., parsing).
|
289 |
+
"""
|
290 |
+
logger.info(
|
291 |
+
f"Loading task/dataset using identifier: '{args.tasks}' with split '{args.split}'"
|
292 |
+
)
|
293 |
+
|
294 |
+
benchmark_subsets = {}
|
295 |
+
for task_str in args.tasks:
|
296 |
+
dataset_args = task_str_to_dataset_args(task_str, args)
|
297 |
+
|
298 |
+
benchmark_subsets[task_str] = DatasetRecipe(**dataset_args)
|
299 |
+
|
300 |
+
benchmark = Benchmark(subsets=benchmark_subsets)
|
301 |
+
|
302 |
+
test_dataset = load_dataset(benchmark, split=args.split)
|
303 |
+
logger.info(
|
304 |
+
f"Dataset loaded successfully. Number of instances: {len(test_dataset)}"
|
305 |
+
)
|
306 |
+
return test_dataset
|
307 |
+
|
308 |
+
|
309 |
+
def task_str_to_dataset_args(task_str, args):
|
310 |
+
dataset_args = parse_key_equals_value_string_to_dict(task_str)
|
311 |
+
|
312 |
+
if args.limit is not None:
|
313 |
+
assert f"max_{args.split}_instances" not in dataset_args, (
|
314 |
+
"limit was inputted both as an arg and as a task parameter"
|
315 |
+
)
|
316 |
+
# Check if limit or loader_limit is already present
|
317 |
+
# dataset_args[f"max_{args.split}_instances"] = args.limit
|
318 |
+
dataset_args[f"max_{args.split}_instances"] = args.limit
|
319 |
+
# Use loader_limit for unitxt compatibility
|
320 |
+
logger.info(
|
321 |
+
f"Applying limit from --limit argument: max_{args.split}_instances={args.limit}"
|
322 |
+
)
|
323 |
+
|
324 |
+
if args.num_fewshots:
|
325 |
+
assert "num_demos" not in dataset_args, (
|
326 |
+
"num_demos was inputted both as an arg and as a task parameter"
|
327 |
+
)
|
328 |
+
dataset_args["num_demos"] = args.num_fewshots
|
329 |
+
dataset_args.update(
|
330 |
+
{
|
331 |
+
"demos_taken_from": "train",
|
332 |
+
"demos_pool_size": -1,
|
333 |
+
"demos_removed_from_data": True,
|
334 |
+
}
|
335 |
+
) # Use loader_limit for unitxt compatibility
|
336 |
+
logger.info(
|
337 |
+
f"Applying limit from --limit argument: num_demos={args.num_fewshots}"
|
338 |
+
)
|
339 |
+
|
340 |
+
if args.apply_chat_template:
|
341 |
+
assert "format" not in dataset_args, (
|
342 |
+
"format was inputted as a task parameter, but chat_api was requested"
|
343 |
+
)
|
344 |
+
dataset_args["format"] = "formats.chat_api"
|
345 |
+
logger.info(
|
346 |
+
"Applying chat template from --apply_chat_template argument: format=formats.chat_api"
|
347 |
+
)
|
348 |
+
|
349 |
+
return dataset_args
|
350 |
+
|
351 |
+
|
352 |
+
def prepare_kwargs(kwargs: dict) -> Dict[str, Any]:
|
353 |
+
"""Prepares the model arguments dictionary.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
kwargs (dict): Parsed command-line arguments.
|
357 |
+
|
358 |
+
Returns:
|
359 |
+
Dict[str, Any]: The processed model arguments dictionary.
|
360 |
+
"""
|
361 |
+
# Ensure model_args is a dictionary, handling potential string return from try_parse_json
|
362 |
+
kwargs_dict = kwargs if isinstance(kwargs, dict) else {}
|
363 |
+
if not isinstance(kwargs, dict) and kwargs is not None:
|
364 |
+
logger.warning(
|
365 |
+
f"Could not parse kwargs '{kwargs}' as JSON or key-value pairs. Treating as empty."
|
366 |
+
)
|
367 |
+
|
368 |
+
logger.info(f"Using kwargs: {kwargs_dict}")
|
369 |
+
return kwargs_dict
|
370 |
+
|
371 |
+
|
372 |
+
def initialize_inference_engine(
|
373 |
+
args: argparse.Namespace,
|
374 |
+
model_args_dict: Dict[str, Any],
|
375 |
+
chat_kwargs_dict: Dict[str, Any],
|
376 |
+
) -> InferenceEngine:
|
377 |
+
"""Initializes the appropriate inference engine based on arguments.
|
378 |
+
|
379 |
+
Args:
|
380 |
+
args (argparse.Namespace): Parsed command-line arguments.
|
381 |
+
model_args_dict (Dict[str, Any]): Processed model arguments.
|
382 |
+
chat_kwargs_dict (Dict[str, Any]): Processed chat arguments.
|
383 |
+
|
384 |
+
Returns:
|
385 |
+
InferenceEngine: The initialized inference engine instance.
|
386 |
+
|
387 |
+
Raises:
|
388 |
+
SystemExit: If required dependencies are missing for the selected model type.
|
389 |
+
ValueError: If required keys are missing in model_args for the selected model type.
|
390 |
+
"""
|
391 |
+
inference_model = None
|
392 |
+
# --- Local Hugging Face Model (using HFAutoModelInferenceEngine) ---
|
393 |
+
if args.model.lower() == "hf":
|
394 |
+
if "pretrained" not in model_args_dict:
|
395 |
+
logger.error(
|
396 |
+
"Missing 'pretrained=<model_id_or_path>' in --model_args for '--model hf'."
|
397 |
+
)
|
398 |
+
raise ValueError(
|
399 |
+
"Argument 'pretrained' is required in --model_args when --model is 'hf'"
|
400 |
+
)
|
401 |
+
|
402 |
+
local_model_name = model_args_dict.pop("pretrained")
|
403 |
+
logger.info(
|
404 |
+
f"Initializing HFAutoModelInferenceEngine for model: {local_model_name}"
|
405 |
+
)
|
406 |
+
|
407 |
+
model_args_dict.update({"batch_size": args.batch_size})
|
408 |
+
logger.info(f"HFAutoModelInferenceEngine args: {model_args_dict}")
|
409 |
+
|
410 |
+
inference_model = HFAutoModelInferenceEngine(
|
411 |
+
model_name=local_model_name,
|
412 |
+
**model_args_dict,
|
413 |
+
chat_kwargs_dict=chat_kwargs_dict,
|
414 |
+
)
|
415 |
+
|
416 |
+
# --- Remote Model (CrossProviderInferenceEngine) ---
|
417 |
+
elif args.model.lower() == "cross_provider":
|
418 |
+
if "model_name" not in model_args_dict:
|
419 |
+
logger.error(
|
420 |
+
"Missing 'model_name=<provider/model_id>' in --model_args for '--model cross_provider'."
|
421 |
+
)
|
422 |
+
raise ValueError(
|
423 |
+
"Argument 'model_name' is required in --model_args when --model is 'cross_provider'"
|
424 |
+
)
|
425 |
+
|
426 |
+
remote_model_name = model_args_dict.pop("model_name")
|
427 |
+
logger.info(
|
428 |
+
f"Initializing CrossProviderInferenceEngine for model: {remote_model_name}"
|
429 |
+
)
|
430 |
+
|
431 |
+
if (
|
432 |
+
"max_tokens" not in model_args_dict
|
433 |
+
and "max_new_tokens" not in model_args_dict
|
434 |
+
):
|
435 |
+
logger.warning(
|
436 |
+
f"'max_tokens' or 'max_new_tokens' not found in --model_args, {remote_model_name} might require it."
|
437 |
+
)
|
438 |
+
|
439 |
+
logger.info(f"CrossProviderInferenceEngine args: {model_args_dict}")
|
440 |
+
|
441 |
+
# Note: CrossProviderInferenceEngine expects 'model' parameter, not 'model_name'
|
442 |
+
inference_model = CrossProviderInferenceEngine(
|
443 |
+
model=remote_model_name,
|
444 |
+
**model_args_dict,
|
445 |
+
)
|
446 |
+
else:
|
447 |
+
# This case should not be reached due to argparse choices
|
448 |
+
logger.error(
|
449 |
+
f"Invalid --model type specified: {args.model}. Use 'hf' or 'cross_provider'."
|
450 |
+
)
|
451 |
+
sys.exit(1) # Exit here as it's an invalid configuration
|
452 |
+
|
453 |
+
return inference_model
|
454 |
+
|
455 |
+
|
456 |
+
def run_inference(engine: InferenceEngine, dataset: HFDataset) -> List[Any]:
|
457 |
+
"""Runs inference using the initialized engine.
|
458 |
+
|
459 |
+
Args:
|
460 |
+
engine (InferenceEngine): The inference engine instance.
|
461 |
+
dataset (HFDataset): The dataset to run inference on.
|
462 |
+
|
463 |
+
Returns:
|
464 |
+
List[Any]: A list of predictions.
|
465 |
+
|
466 |
+
Raises:
|
467 |
+
Exception: If an error occurs during inference.
|
468 |
+
"""
|
469 |
+
logger.info("Starting inference...")
|
470 |
+
try:
|
471 |
+
predictions = engine.infer(dataset)
|
472 |
+
logger.info("Inference completed.")
|
473 |
+
if not predictions:
|
474 |
+
logger.warning("Inference returned no predictions.")
|
475 |
+
return [] # Return empty list if no predictions
|
476 |
+
if len(predictions) != len(dataset):
|
477 |
+
logger.error(
|
478 |
+
f"Inference returned an unexpected number of predictions ({len(predictions)}). Expected {len(dataset)}."
|
479 |
+
)
|
480 |
+
# Don't exit, but log error. Evaluation might still work partially or fail later.
|
481 |
+
return predictions
|
482 |
+
except Exception:
|
483 |
+
logger.exception("An error occurred during inference") # Use logger.exception
|
484 |
+
raise # Re-raise after logging
|
485 |
+
|
486 |
+
|
487 |
+
def run_evaluation(predictions: List[Any], dataset: HFDataset) -> EvaluationResults:
|
488 |
+
"""Runs evaluation on the predictions.
|
489 |
+
|
490 |
+
Args:
|
491 |
+
predictions (List[Any]): The list of predictions from the model.
|
492 |
+
dataset (HFDataset): The dataset containing references and other data.
|
493 |
+
|
494 |
+
Returns:
|
495 |
+
EvaluationResults: The evaluated dataset (list of instances with scores).
|
496 |
+
|
497 |
+
Raises:
|
498 |
+
RuntimeError: If evaluation returns no results or an unexpected type.
|
499 |
+
Exception: If any other error occurs during evaluation.
|
500 |
+
"""
|
501 |
+
logger.info("Starting evaluation...")
|
502 |
+
if not predictions:
|
503 |
+
logger.warning("Skipping evaluation as there are no predictions.")
|
504 |
+
return [] # Return empty list if no predictions to evaluate
|
505 |
+
|
506 |
+
try:
|
507 |
+
evaluation_results = evaluate(predictions=predictions, data=dataset)
|
508 |
+
logger.info("Evaluation completed.")
|
509 |
+
if not evaluation_results:
|
510 |
+
logger.error("Evaluation returned no results (empty list/None).")
|
511 |
+
# Raise an error as this indicates a problem in the evaluation process
|
512 |
+
raise RuntimeError("Evaluation returned no results.")
|
513 |
+
if not isinstance(evaluation_results, EvaluationResults):
|
514 |
+
logger.error(
|
515 |
+
f"Evaluation returned unexpected type: {type(evaluation_results)}. Expected list."
|
516 |
+
)
|
517 |
+
raise RuntimeError(
|
518 |
+
f"Evaluation returned unexpected type: {type(evaluation_results)}"
|
519 |
+
)
|
520 |
+
|
521 |
+
return evaluation_results
|
522 |
+
except Exception:
|
523 |
+
logger.exception("An error occurred during evaluation") # Use logger.exception
|
524 |
+
raise # Re-raise after logging
|
525 |
+
|
526 |
+
|
527 |
+
def _get_unitxt_commit_hash() -> Optional[str]:
|
528 |
+
"""Tries to get the git commit hash of the installed unitxt package."""
|
529 |
+
try:
|
530 |
+
# Find the directory of the unitxt package
|
531 |
+
# Use inspect to be more robust finding the package path
|
532 |
+
|
533 |
+
current_script_path = os.path.abspath(__file__)
|
534 |
+
package_dir = os.path.dirname(current_script_path)
|
535 |
+
|
536 |
+
# Check if it's a git repository and get the commit hash
|
537 |
+
# Use absolute path for git command
|
538 |
+
git_command = ["git", "-C", os.path.abspath(package_dir), "rev-parse", "HEAD"]
|
539 |
+
logger.debug(f"Running git command: {' '.join(git_command)}")
|
540 |
+
result = subprocess.run(
|
541 |
+
git_command,
|
542 |
+
capture_output=True,
|
543 |
+
text=True,
|
544 |
+
check=False, # Don't raise error if git command fails
|
545 |
+
encoding="utf-8",
|
546 |
+
errors="ignore", # Ignore potential decoding errors
|
547 |
+
)
|
548 |
+
if result.returncode == 0:
|
549 |
+
commit_hash = result.stdout.strip()
|
550 |
+
logger.info(f"Found unitxt git commit hash: {commit_hash}")
|
551 |
+
# Verify it looks like a hash (e.g., 40 hex chars)
|
552 |
+
if len(commit_hash) == 40 and all(
|
553 |
+
c in "0123456789abcdef" for c in commit_hash
|
554 |
+
):
|
555 |
+
return commit_hash
|
556 |
+
logger.warning(
|
557 |
+
f"Git command output '{commit_hash}' doesn't look like a valid commit hash."
|
558 |
+
)
|
559 |
+
return None
|
560 |
+
stderr_msg = result.stderr.strip() if result.stderr else "No stderr"
|
561 |
+
logger.warning(
|
562 |
+
f"Could not get unitxt git commit hash (git command failed with code {result.returncode}): {stderr_msg}"
|
563 |
+
)
|
564 |
+
return None
|
565 |
+
except ImportError:
|
566 |
+
logger.warning("unitxt package not found, cannot determine commit hash.")
|
567 |
+
return None
|
568 |
+
except FileNotFoundError:
|
569 |
+
logger.warning(
|
570 |
+
"'git' command not found in PATH. Cannot determine unitxt commit hash."
|
571 |
+
)
|
572 |
+
return None
|
573 |
+
except Exception as e:
|
574 |
+
logger.warning(
|
575 |
+
f"Error getting unitxt commit hash: {e}", exc_info=True
|
576 |
+
) # Log traceback
|
577 |
+
return None
|
578 |
+
|
579 |
+
|
580 |
+
def _get_installed_packages() -> Dict[str, str]:
|
581 |
+
"""Gets a dictionary of installed packages and their versions."""
|
582 |
+
packages = {}
|
583 |
+
try:
|
584 |
+
for dist in importlib.metadata.distributions():
|
585 |
+
# Handle potential missing metadata gracefully
|
586 |
+
name = dist.metadata.get("Name")
|
587 |
+
version = dist.metadata.get("Version")
|
588 |
+
if name and version:
|
589 |
+
packages[name] = version
|
590 |
+
elif name:
|
591 |
+
packages[name] = "N/A" # Record package even if version is missing
|
592 |
+
logger.debug(f"Could not find version for package: {name}")
|
593 |
+
|
594 |
+
logger.info(f"Collected versions for {len(packages)} installed packages.")
|
595 |
+
except Exception as e:
|
596 |
+
logger.warning(f"Could not retrieve installed package list: {e}", exc_info=True)
|
597 |
+
return packages
|
598 |
+
|
599 |
+
|
600 |
+
def _get_unitxt_version() -> str:
|
601 |
+
"""Gets the installed unitxt version using importlib.metadata."""
|
602 |
+
try:
|
603 |
+
version = importlib.metadata.version("unitxt")
|
604 |
+
logger.info(f"Found unitxt version using importlib.metadata: {version}")
|
605 |
+
return version
|
606 |
+
except importlib.metadata.PackageNotFoundError:
|
607 |
+
logger.warning(
|
608 |
+
"Could not find 'unitxt' package version using importlib.metadata. Is it installed correctly?"
|
609 |
+
)
|
610 |
+
return "N/A"
|
611 |
+
except Exception as e:
|
612 |
+
logger.warning(
|
613 |
+
f"Error getting unitxt version using importlib.metadata: {e}", exc_info=True
|
614 |
+
)
|
615 |
+
return "N/A"
|
616 |
+
|
617 |
+
|
618 |
+
def prepend_timestamp_to_path(original_path, timestamp):
|
619 |
+
"""Takes a path string and a timestamp string, prepends the timestamp to the filename part of the path, and returns the new path string."""
|
620 |
+
directory, filename = os.path.split(original_path)
|
621 |
+
# Use an f-string to create the new filename with the timestamp prepended
|
622 |
+
new_filename = f"{timestamp}_{filename}"
|
623 |
+
# Join the directory and the new filename back together
|
624 |
+
return os.path.join(directory, new_filename)
|
625 |
+
|
626 |
+
|
627 |
+
def _save_results_to_disk(
|
628 |
+
args: argparse.Namespace,
|
629 |
+
global_scores: Dict[str, Any],
|
630 |
+
all_samples_data: Dict[str, List[Dict[str, Any]]],
|
631 |
+
results_path: str,
|
632 |
+
samples_path: str,
|
633 |
+
) -> None:
|
634 |
+
"""Saves the configuration, environment info, global scores, and samples to JSON files.
|
635 |
+
|
636 |
+
Args:
|
637 |
+
args (argparse.Namespace): Parsed command-line arguments.
|
638 |
+
global_scores (Dict[str, Any]): Dictionary of global scores.
|
639 |
+
all_samples_data (Dict[str, List[Dict[str, Any]]]): List of processed sample data.
|
640 |
+
results_path (str): Path to save the summary results JSON file.
|
641 |
+
samples_path (str): Path to save the detailed samples JSON file.
|
642 |
+
"""
|
643 |
+
# --- Gather Configuration ---
|
644 |
+
config_to_save = {}
|
645 |
+
for k, v in vars(args).items():
|
646 |
+
# Ensure complex objects are represented as strings
|
647 |
+
if isinstance(v, (str, int, float, bool, list, dict, type(None))):
|
648 |
+
config_to_save[k] = v
|
649 |
+
else:
|
650 |
+
try:
|
651 |
+
# Try standard repr first
|
652 |
+
config_to_save[k] = repr(v)
|
653 |
+
except Exception:
|
654 |
+
# Fallback if repr fails
|
655 |
+
config_to_save[k] = (
|
656 |
+
f"<Object of type {type(v).__name__} could not be represented>"
|
657 |
+
)
|
658 |
+
|
659 |
+
# --- Gather Environment Info ---
|
660 |
+
unitxt_commit = _get_unitxt_commit_hash()
|
661 |
+
# Get version using the dedicated function
|
662 |
+
unitxt_pkg_version = _get_unitxt_version()
|
663 |
+
|
664 |
+
environment_info = {
|
665 |
+
"timestamp_utc": datetime.utcnow().isoformat() + "Z",
|
666 |
+
"command_line_invocation": sys.argv,
|
667 |
+
"parsed_arguments": config_to_save, # Include parsed args here as well
|
668 |
+
"unitxt_version": unitxt_pkg_version, # Use version from importlib.metadata
|
669 |
+
"unitxt_commit_hash": unitxt_commit if unitxt_commit else "N/A",
|
670 |
+
"python_version": platform.python_version(),
|
671 |
+
"system": platform.system(),
|
672 |
+
"system_version": platform.version(),
|
673 |
+
"installed_packages": _get_installed_packages(),
|
674 |
+
}
|
675 |
+
|
676 |
+
# --- Prepare Final Results Structure ---
|
677 |
+
results_summary = {
|
678 |
+
"environment_info": environment_info,
|
679 |
+
"results": global_scores,
|
680 |
+
}
|
681 |
+
|
682 |
+
# prepend to the results_path name the time in a wat like this: 2025-04-04T11:37:32
|
683 |
+
|
684 |
+
timestamp = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
|
685 |
+
|
686 |
+
results_path = prepend_timestamp_to_path(results_path, timestamp)
|
687 |
+
samples_path = prepend_timestamp_to_path(samples_path, timestamp)
|
688 |
+
|
689 |
+
# --- Save Summary ---
|
690 |
+
logger.info(f"Saving global results summary to: {results_path}")
|
691 |
+
try:
|
692 |
+
with open(results_path, "w", encoding="utf-8") as f:
|
693 |
+
json.dump(results_summary, f, indent=4, ensure_ascii=False)
|
694 |
+
except OSError as e:
|
695 |
+
logger.error(f"Failed to write results summary file {results_path}: {e}")
|
696 |
+
except TypeError as e:
|
697 |
+
logger.error(
|
698 |
+
f"Failed to serialize results summary to JSON: {e}. Check data types."
|
699 |
+
)
|
700 |
+
# Log the problematic structure if possible (might be large)
|
701 |
+
# logger.debug(f"Problematic results_summary structure: {results_summary}")
|
702 |
+
|
703 |
+
# --- Save Samples (if requested) ---
|
704 |
+
if args.log_samples:
|
705 |
+
logger.info(f"Saving detailed samples to: {samples_path}")
|
706 |
+
# Structure samples file with environment info as well for self-containment
|
707 |
+
samples_output = {
|
708 |
+
"environment_info": environment_info, # Repeat env info here
|
709 |
+
"samples": all_samples_data,
|
710 |
+
}
|
711 |
+
try:
|
712 |
+
with open(samples_path, "w", encoding="utf-8") as f:
|
713 |
+
json.dump(samples_output, f, indent=4, ensure_ascii=False)
|
714 |
+
except OSError as e:
|
715 |
+
logger.error(f"Failed to write samples file {samples_path}: {e}")
|
716 |
+
except TypeError as e:
|
717 |
+
logger.error(f"Failed to serialize samples to JSON: {e}. Check data types.")
|
718 |
+
|
719 |
+
|
720 |
+
def process_and_save_results(
|
721 |
+
args: argparse.Namespace,
|
722 |
+
evaluation_results: EvaluationResults,
|
723 |
+
results_path: str,
|
724 |
+
samples_path: str,
|
725 |
+
) -> None:
|
726 |
+
"""Processes, prints, and saves the evaluation results.
|
727 |
+
|
728 |
+
Args:
|
729 |
+
args (argparse.Namespace): Parsed command-line arguments.
|
730 |
+
evaluation_results (EvaluationResults): The list of evaluated instances.
|
731 |
+
results_path (str): Path to save the summary results JSON file.
|
732 |
+
samples_path (str): Path to save the detailed samples JSON file.
|
733 |
+
|
734 |
+
Raises:
|
735 |
+
Exception: If an error occurs during result processing or saving (re-raised).
|
736 |
+
"""
|
737 |
+
try:
|
738 |
+
# global_scores, all_samples_data = _extract_scores_and_samples(evaluated_dataset)
|
739 |
+
|
740 |
+
subsets_scores = evaluation_results.subsets_scores
|
741 |
+
instances_results = evaluation_results.instance_scores
|
742 |
+
|
743 |
+
subset_instances = {}
|
744 |
+
for instance in instances_results:
|
745 |
+
if instance["subset"][0] not in subset_instances:
|
746 |
+
subset_instances[instance["subset"][0]] = []
|
747 |
+
del instance["postprocessors"]
|
748 |
+
subset_instances[instance["subset"][0]].append(instance)
|
749 |
+
|
750 |
+
logger.info(f"\n{subsets_scores.summary}")
|
751 |
+
|
752 |
+
# --- Save Results ---
|
753 |
+
# Pass all necessary data to the saving function
|
754 |
+
_save_results_to_disk(
|
755 |
+
args, subsets_scores, subset_instances, results_path, samples_path
|
756 |
+
)
|
757 |
+
|
758 |
+
except Exception:
|
759 |
+
logger.exception(
|
760 |
+
"An error occurred during result processing or saving"
|
761 |
+
) # Use logger.exception
|
762 |
+
raise # Re-raise after logging
|
763 |
+
|
764 |
+
|
765 |
+
def main():
|
766 |
+
"""Main function to parse arguments and run evaluation."""
|
767 |
+
parser = setup_parser()
|
768 |
+
args = parser.parse_args()
|
769 |
+
|
770 |
+
# Setup logging ASAP
|
771 |
+
setup_logging(args.verbosity)
|
772 |
+
|
773 |
+
logger.info("Starting Unitxt Evaluation CLI")
|
774 |
+
# Log raw and parsed args at DEBUG level
|
775 |
+
logger.debug(f"Raw command line arguments: {sys.argv}")
|
776 |
+
logger.debug(f"Parsed arguments: {vars(args)}") # Log the vars(args) dict
|
777 |
+
logger.debug(
|
778 |
+
f"Parsed model_args type: {type(args.model_args)}, value: {args.model_args}"
|
779 |
+
)
|
780 |
+
|
781 |
+
try:
|
782 |
+
results_path, samples_path = prepare_output_paths(
|
783 |
+
args.output_path, args.output_file_prefix
|
784 |
+
)
|
785 |
+
|
786 |
+
# Apply unitxt settings within a context manager
|
787 |
+
with configure_unitxt_settings(args):
|
788 |
+
test_dataset = cli_load_dataset(args)
|
789 |
+
model_args_dict = prepare_kwargs(args.model_args)
|
790 |
+
gen_kwargs_dict = prepare_kwargs(args.gen_kwargs)
|
791 |
+
chat_kwargs_dict = prepare_kwargs(args.chat_template_kwargs)
|
792 |
+
|
793 |
+
model_args_dict.update(gen_kwargs_dict)
|
794 |
+
inference_model = initialize_inference_engine(
|
795 |
+
args, model_args_dict, chat_kwargs_dict
|
796 |
+
)
|
797 |
+
predictions = run_inference(inference_model, test_dataset)
|
798 |
+
evaluation_results = run_evaluation(predictions, test_dataset)
|
799 |
+
process_and_save_results(
|
800 |
+
args, evaluation_results, results_path, samples_path
|
801 |
+
)
|
802 |
+
|
803 |
+
# --- More Specific Error Handling ---
|
804 |
+
except (UnitxtArtifactNotFoundError, FileNotFoundError) as e:
|
805 |
+
logger.exception(f"Error loading artifact or file: {e}")
|
806 |
+
sys.exit(1)
|
807 |
+
except (AttributeError, ValueError) as e:
|
808 |
+
# Catch issues like missing keys in args, parsing errors, etc.
|
809 |
+
logger.exception(f"Configuration or value error: {e}")
|
810 |
+
sys.exit(1)
|
811 |
+
except ImportError as e:
|
812 |
+
# Catch missing optional dependencies
|
813 |
+
logger.exception(f"Missing dependency: {e}")
|
814 |
+
sys.exit(1)
|
815 |
+
except RuntimeError as e:
|
816 |
+
# Catch errors explicitly raised during execution (e.g., evaluation failure)
|
817 |
+
logger.exception(f"Runtime error during processing: {e}")
|
818 |
+
sys.exit(1)
|
819 |
+
except Exception as e:
|
820 |
+
# Catch any other unexpected errors
|
821 |
+
logger.exception(f"An unexpected error occurred: {e}")
|
822 |
+
sys.exit(1)
|
823 |
+
|
824 |
+
logger.info("Unitxt Evaluation CLI finished successfully.")
|
825 |
+
|
826 |
+
|
827 |
+
if __name__ == "__main__":
|
828 |
+
main()
|
inference.py
CHANGED
@@ -61,6 +61,7 @@ def batched(lst, n):
|
|
61 |
while batch := list(islice(it, n)):
|
62 |
yield batch
|
63 |
|
|
|
64 |
class StandardAPIParamsMixin(Artifact):
|
65 |
model: str
|
66 |
frequency_penalty: Optional[float] = None
|
@@ -157,6 +158,7 @@ class ListWithMetadata(List[T]):
|
|
157 |
|
158 |
class InferenceEngine(Artifact):
|
159 |
"""Abstract base class for inference."""
|
|
|
160 |
cache_batch_size: int = 100
|
161 |
use_cache: bool = True
|
162 |
|
@@ -206,9 +208,9 @@ class InferenceEngine(Artifact):
|
|
206 |
instance_str = json.dumps(record, sort_keys=True)
|
207 |
return hashlib.md5(instance_str.encode()).hexdigest()
|
208 |
|
209 |
-
def verify_infer_inputs(
|
210 |
-
|
211 |
-
|
212 |
if not isoftype(dataset, Union[List[Dict[str, Any]], Dataset]):
|
213 |
raise Exception(
|
214 |
"Dataset passed to infer() is not list of dictionaries or Huggingface Dataset"
|
@@ -238,33 +240,49 @@ class InferenceEngine(Artifact):
|
|
238 |
if self.use_cache:
|
239 |
number_of_batches = len(dataset) // self.cache_batch_size + 1
|
240 |
result = []
|
241 |
-
for batch_index, batch in enumerate(
|
|
|
|
|
242 |
cached_results = []
|
243 |
missing_examples = []
|
244 |
for i, item in enumerate(batch):
|
245 |
cache_key = self._get_cache_key(item)
|
246 |
cached_value = self._cache.get(cache_key)
|
247 |
if cached_value is not None:
|
248 |
-
cached_results.append(
|
|
|
|
|
249 |
else:
|
250 |
-
missing_examples.append(
|
|
|
|
|
251 |
# infare on missing examples only, without indices
|
252 |
|
253 |
-
logger.info(
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
256 |
# recombined to index and value
|
257 |
-
inferred_results = list(
|
|
|
|
|
258 |
# Add missing examples to cache
|
259 |
-
for (_, item), (_, prediction) in zip(
|
|
|
|
|
260 |
if prediction is None:
|
261 |
continue
|
262 |
cache_key = self._get_cache_key(item)
|
263 |
self._cache[cache_key] = prediction
|
264 |
else:
|
265 |
-
inferred_results=[]
|
266 |
# Combine cached and inferred results in original order
|
267 |
-
batch_predictions = [
|
|
|
|
|
268 |
result.extend(batch_predictions)
|
269 |
else:
|
270 |
result = self._infer(dataset, return_meta_data)
|
@@ -414,6 +432,8 @@ class HFInferenceEngineBase(
|
|
414 |
low_cpu_mem_usage: bool = True
|
415 |
torch_dtype: str = "torch.float16"
|
416 |
|
|
|
|
|
417 |
model: Any = InternalField(default=None, name="Inference object")
|
418 |
processor: Any = InternalField(default=None, name="Input processor (tokenizer)")
|
419 |
|
@@ -618,16 +638,52 @@ class HFInferenceEngineBase(
|
|
618 |
class HFAutoModelInferenceEngine(HFInferenceEngineBase):
|
619 |
label: str = "hf_auto_model"
|
620 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
621 |
def _init_processor(self):
|
622 |
from transformers import AutoTokenizer
|
623 |
|
624 |
self.processor = AutoTokenizer.from_pretrained(
|
625 |
pretrained_model_name_or_path=self.model_name,
|
626 |
use_fast=self.use_fast_tokenizer,
|
627 |
-
padding=True,
|
628 |
-
truncation=True,
|
629 |
)
|
630 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
631 |
def _init_model(self):
|
632 |
from transformers import (
|
633 |
AutoConfig,
|
@@ -641,11 +697,12 @@ class HFAutoModelInferenceEngine(HFInferenceEngineBase):
|
|
641 |
else AutoModelForCausalLM
|
642 |
)
|
643 |
|
|
|
|
|
644 |
self.model = model_class.from_pretrained(
|
645 |
pretrained_model_name_or_path=self.model_name,
|
646 |
trust_remote_code=True,
|
647 |
-
|
648 |
-
torch_dtype=self._get_torch_dtype(),
|
649 |
)
|
650 |
if self.device_map is None:
|
651 |
self.model.to(self.device)
|
@@ -653,13 +710,21 @@ class HFAutoModelInferenceEngine(HFInferenceEngineBase):
|
|
653 |
def prepare_inputs(self, data: Iterable) -> Mapping:
|
654 |
if isinstance(data[0], list):
|
655 |
data = self.processor.apply_chat_template(
|
656 |
-
data,
|
|
|
|
|
|
|
657 |
)
|
|
|
|
|
|
|
|
|
658 |
return self.processor(
|
659 |
data,
|
660 |
-
padding=True,
|
661 |
-
truncation=True,
|
662 |
return_tensors="pt",
|
|
|
|
|
|
|
663 |
).to(self.device or self.device_map)
|
664 |
|
665 |
def _infer_fn(
|
@@ -668,40 +733,81 @@ class HFAutoModelInferenceEngine(HFInferenceEngineBase):
|
|
668 |
return_meta_data: bool,
|
669 |
return_logprobs: bool,
|
670 |
) -> Union[List[str], List[Dict], List[TextGenerationInferenceOutput]]:
|
671 |
-
|
672 |
-
[instance["source"] for instance in dataset]
|
673 |
-
)
|
674 |
-
input_length = (
|
675 |
-
1
|
676 |
-
if self.model.config.is_encoder_decoder
|
677 |
-
else tokenized_inputs.input_ids.shape[1]
|
678 |
-
)
|
679 |
|
680 |
-
|
681 |
-
|
|
|
|
|
|
|
682 |
|
683 |
-
|
684 |
-
|
685 |
-
|
|
|
|
|
686 |
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
|
693 |
-
|
694 |
-
self.
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
)
|
703 |
-
|
704 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
|
706 |
def _infer(
|
707 |
self,
|
@@ -885,10 +991,10 @@ class HFPeftInferenceEngine(HFAutoModelInferenceEngine):
|
|
885 |
|
886 |
model_class = (
|
887 |
AutoPeftModelForSeq2SeqLM
|
888 |
-
if AutoConfig.from_pretrained(self.
|
889 |
else AutoPeftModelForCausalLM
|
890 |
)
|
891 |
-
path = self.
|
892 |
if settings.hf_offline_models_path is not None:
|
893 |
path = os.path.join(settings.hf_offline_models_path, path)
|
894 |
|
@@ -899,6 +1005,7 @@ class HFPeftInferenceEngine(HFAutoModelInferenceEngine):
|
|
899 |
low_cpu_mem_usage=self.low_cpu_mem_usage,
|
900 |
torch_dtype=self._get_torch_dtype(),
|
901 |
)
|
|
|
902 |
if self.device_map is None:
|
903 |
self.model.to(self.device)
|
904 |
|
@@ -949,19 +1056,27 @@ class HFPipelineBasedInferenceEngine(
|
|
949 |
except Exception:
|
950 |
try:
|
951 |
from peft import PeftConfig
|
|
|
952 |
# If full model loading fails, try loading as a PEFT adapter
|
953 |
peft_config = PeftConfig.from_pretrained(path)
|
954 |
|
955 |
if not peft_config.base_model_name_or_path:
|
956 |
-
raise ValueError(
|
|
|
|
|
957 |
|
958 |
# Load the base model's config
|
959 |
-
config = AutoConfig.from_pretrained(
|
|
|
|
|
960 |
except Exception as err2:
|
961 |
-
raise ValueError(
|
962 |
-
|
|
|
963 |
|
964 |
-
self.task =
|
|
|
|
|
965 |
|
966 |
def _get_model_args(self) -> Dict[str, Any]:
|
967 |
import torch
|
@@ -1306,9 +1421,9 @@ class OptionSelectingByLogProbsInferenceEngine:
|
|
1306 |
for option in instance["task_data"]["options"]
|
1307 |
]
|
1308 |
|
1309 |
-
dataset_with_options_logprobs: List[
|
1310 |
-
|
1311 |
-
|
1312 |
|
1313 |
dataset_iterator = iter(dataset_with_options_logprobs)
|
1314 |
|
@@ -1381,7 +1496,7 @@ class IbmGenAiInferenceEngine(
|
|
1381 |
def _get_credentials():
|
1382 |
from genai import Credentials
|
1383 |
|
1384 |
-
api_key_env_var_name = "GENAI_KEY"
|
1385 |
api_key = os.environ.get(api_key_env_var_name)
|
1386 |
|
1387 |
assert api_key is not None, (
|
@@ -1467,9 +1582,9 @@ class IbmGenAiInferenceEngine(
|
|
1467 |
predict_results = []
|
1468 |
for prediction in predictions:
|
1469 |
result: TextGenerationResult = prediction.results[0]
|
1470 |
-
assert isinstance(
|
1471 |
-
result.generated_tokens
|
1472 |
-
)
|
1473 |
|
1474 |
predict_result = []
|
1475 |
for base_token in result.generated_tokens:
|
@@ -1714,6 +1829,7 @@ class OpenAiInferenceEngine(
|
|
1714 |
@run_with_imap
|
1715 |
def _get_chat_completion(self, instance, return_meta_data):
|
1716 |
import openai
|
|
|
1717 |
messages = self.to_messages(instance)
|
1718 |
try:
|
1719 |
response = self.client.chat.completions.create(
|
@@ -1725,13 +1841,17 @@ class OpenAiInferenceEngine(
|
|
1725 |
return self.get_return_object(prediction, response, return_meta_data)
|
1726 |
# catch in case of content_filtering failure
|
1727 |
except openai.BadRequestError as e:
|
1728 |
-
logging.error(
|
1729 |
-
|
1730 |
-
|
|
|
|
|
|
|
1731 |
|
1732 |
@run_with_imap
|
1733 |
def _get_logprobs(self, instance, return_meta_data):
|
1734 |
import openai
|
|
|
1735 |
messages = self.to_messages(instance)
|
1736 |
try:
|
1737 |
response = self.client.chat.completions.create(
|
@@ -1752,13 +1872,13 @@ class OpenAiInferenceEngine(
|
|
1752 |
return self.get_return_object(pred_output, response, return_meta_data)
|
1753 |
# catch in case of content_filtering failure
|
1754 |
except openai.BadRequestError as e:
|
1755 |
-
logging.error(
|
1756 |
-
|
1757 |
-
|
1758 |
-
|
1759 |
-
|
1760 |
-
|
1761 |
-
|
1762 |
|
1763 |
def get_return_object(self, predict_result, response, return_meta_data):
|
1764 |
if return_meta_data:
|
@@ -1792,9 +1912,9 @@ class AzureOpenAIInferenceEngine(OpenAiInferenceEngine):
|
|
1792 |
api_version = self.credentials.get(
|
1793 |
"api_version", os.environ.get("OPENAI_API_VERSION", None)
|
1794 |
)
|
1795 |
-
assert (
|
1796 |
-
|
1797 |
-
)
|
1798 |
api_url = f"{azure_openapi_host}/openai/deployments/{self.model_name}/chat/completions?api-version={api_version}"
|
1799 |
|
1800 |
return {"api_key": api_key, "api_url": api_url, "api_version": api_version}
|
@@ -1821,9 +1941,7 @@ class RITSInferenceEngine(
|
|
1821 |
label: str = "rits"
|
1822 |
data_classification_policy = ["public", "proprietary"]
|
1823 |
|
1824 |
-
model_names_dict = {
|
1825 |
-
"microsoft/phi-4": "microsoft-phi-4"
|
1826 |
-
}
|
1827 |
|
1828 |
def get_default_headers(self):
|
1829 |
return {"RITS_API_KEY": self.credentials["api_key"]}
|
@@ -1891,7 +2009,7 @@ class TogetherAiInferenceEngine(
|
|
1891 |
from together import Together
|
1892 |
from together.types.models import ModelType
|
1893 |
|
1894 |
-
api_key_env_var_name = "TOGETHER_API_KEY"
|
1895 |
api_key = os.environ.get(api_key_env_var_name)
|
1896 |
assert api_key is not None, (
|
1897 |
f"Error while trying to run TogetherAiInferenceEngine."
|
@@ -1906,9 +2024,9 @@ class TogetherAiInferenceEngine(
|
|
1906 |
together_model.id: together_model.type for together_model in together_models
|
1907 |
}
|
1908 |
model_type = together_model_id_to_type.get(self.model_name)
|
1909 |
-
assert (
|
1910 |
-
|
1911 |
-
)
|
1912 |
assert model_type in [ModelType.CHAT, ModelType.LANGUAGE, ModelType.CODE], (
|
1913 |
f"Together AI model type {model_type} is not supported; "
|
1914 |
"supported types are 'chat', 'language' and 'code'."
|
@@ -2087,11 +2205,11 @@ class WMLInferenceEngineBase(
|
|
2087 |
def verify(self):
|
2088 |
super().verify()
|
2089 |
|
2090 |
-
assert (
|
2091 |
-
self.model_name
|
2092 |
-
|
2093 |
-
|
2094 |
-
)
|
2095 |
|
2096 |
# def process_data_before_dump(self, data):
|
2097 |
# if "credentials" in data:
|
@@ -2110,11 +2228,11 @@ class WMLInferenceEngineBase(
|
|
2110 |
self._verify_wml_credentials(self.credentials)
|
2111 |
return APIClient(
|
2112 |
credentials=Credentials(
|
2113 |
-
api_key=self.credentials["api_key"],
|
2114 |
-
url=self.credentials["url"]
|
2115 |
),
|
2116 |
project_id=self.credentials.get("project_id", None),
|
2117 |
-
space_id=self.credentials.get("space_id", None)
|
|
|
2118 |
|
2119 |
@staticmethod
|
2120 |
def _read_wml_credentials_from_env() -> CredentialsWML:
|
@@ -2182,9 +2300,9 @@ class WMLInferenceEngineBase(
|
|
2182 |
"['url', 'api_key', 'username', 'password']."
|
2183 |
)
|
2184 |
|
2185 |
-
assert credentials.get(
|
2186 |
-
"url"
|
2187 |
-
)
|
2188 |
assert "space_id" in credentials or "project_id" in credentials, (
|
2189 |
"Either 'space_id' or 'project_id' must be provided "
|
2190 |
"as keys for WML credentials dict."
|
@@ -2585,7 +2703,9 @@ class WMLInferenceEngineChat(WMLInferenceEngineBase, WMLChatParamsMixin):
|
|
2585 |
return True
|
2586 |
|
2587 |
def to_messages(self, instance: Union[Dict, List]) -> List[List[Dict[str, Any]]]:
|
2588 |
-
if isinstance(instance["source"], str) and self.check_instance_contains_image(
|
|
|
|
|
2589 |
return self._create_messages_from_instance(instance)
|
2590 |
|
2591 |
messages = super().to_messages(instance)
|
@@ -2909,7 +3029,7 @@ class VLLMParamsMixin(Artifact):
|
|
2909 |
|
2910 |
|
2911 |
class VLLMInferenceEngine(InferenceEngine, PackageRequirementsMixin, VLLMParamsMixin):
|
2912 |
-
label="vllm"
|
2913 |
|
2914 |
def get_engine_id(self):
|
2915 |
return get_model_and_label_id(self.model, self.label)
|
@@ -3011,7 +3131,6 @@ class LiteLLMInferenceEngine(
|
|
3011 |
self.inference_type = "litellm"
|
3012 |
from litellm import acompletion
|
3013 |
|
3014 |
-
|
3015 |
self._completion = acompletion
|
3016 |
# Initialize a semaphore to limit concurrency
|
3017 |
self._semaphore = asyncio.Semaphore(round(self.max_requests_per_second))
|
@@ -3032,7 +3151,6 @@ class LiteLLMInferenceEngine(
|
|
3032 |
response = await self._completion(
|
3033 |
messages=messages,
|
3034 |
max_retries=self.max_retries,
|
3035 |
-
caching=True,
|
3036 |
drop_params=False,
|
3037 |
**self.credentials,
|
3038 |
**kwargs,
|
@@ -3123,10 +3241,10 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
|
|
3123 |
|
3124 |
label: str = "cross_provider"
|
3125 |
provider: Optional[_supported_apis] = None
|
3126 |
-
provider_specific_args: Optional[Dict[str, Dict[str,str]]] = None
|
3127 |
|
3128 |
provider_model_map: Dict[_supported_apis, Dict[str, str]] = {
|
3129 |
-
"watsonx-sdk": {
|
3130 |
"granite-20b-code-instruct": "ibm/granite-20b-code-instruct",
|
3131 |
"granite-3-2-8b-instruct": "ibm/granite-3-2-8b-instruct",
|
3132 |
"granite-3-2b-instruct": "ibm/granite-3-2b-instruct",
|
@@ -3153,7 +3271,7 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
|
|
3153 |
"llama-3-1-70b-instruct": "together_ai/meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
3154 |
"llama-3-1-405b-instruct": "together_ai/meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
3155 |
"llama-3-2-1b-instruct": "together_ai/togethercomputer/llama-3-2-1b-instruct",
|
3156 |
-
"llama-3-3-70b-instruct": "together_ai/meta-llama/Llama-3.3-70B-Instruct-Turbo"
|
3157 |
},
|
3158 |
"aws": {
|
3159 |
"llama-3-8b-instruct": "bedrock/meta.llama3-8b-instruct-v1:0",
|
@@ -3167,7 +3285,7 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
|
|
3167 |
"llama-3-1-405b-instruct": "llama3.1:405b",
|
3168 |
"llama-3-2-1b-instruct": "llama3.2:1b",
|
3169 |
"llama-3-2-3b-instruct": "llama3.2:3b",
|
3170 |
-
"llama-3-3-70b-instruct": "llama3.3"
|
3171 |
},
|
3172 |
"bam": {
|
3173 |
"granite-3-8b-instruct": "ibm/granite-8b-instruct-preview-4k",
|
@@ -3242,12 +3360,14 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
|
|
3242 |
"llama-3-1-405b-instruct": "vertex_ai/meta/llama-3.1-405b-instruct-maas",
|
3243 |
},
|
3244 |
"replicate": {
|
3245 |
-
"granite-
|
3246 |
-
"granite-3-2b
|
3247 |
-
"granite-3-8b-instruct": "replicate/ibm-granite/granite-3.0-8b-instruct",
|
3248 |
-
"granite-3-1-2b-instruct": "replicate/ibm-granite/granite-3.1-2b-instruct",
|
3249 |
"granite-3-1-8b-instruct": "replicate/ibm-granite/granite-3.1-8b-instruct",
|
|
|
|
|
|
|
3250 |
"granite-8b-code-instruct-128k": "replicate/ibm-granite/granite-8b-code-instruct-128k",
|
|
|
3251 |
"llama-2-13b": "replicate/meta/llama-2-13b",
|
3252 |
"llama-2-13b-chat": "replicate/meta/llama-2-13b-chat",
|
3253 |
"llama-2-70b": "replicate/meta/llama-2-70b",
|
@@ -3264,7 +3384,9 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
|
|
3264 |
"mixtral-8x7b-instruct-v0.1": "replicate/mistralai/mixtral-8x7b-instruct-v0.1",
|
3265 |
},
|
3266 |
}
|
3267 |
-
provider_model_map["watsonx"] = {
|
|
|
|
|
3268 |
|
3269 |
_provider_to_base_class = {
|
3270 |
"watsonx": LiteLLMInferenceEngine,
|
@@ -3307,7 +3429,7 @@ class CrossProviderInferenceEngine(InferenceEngine, StandardAPIParamsMixin):
|
|
3307 |
args["model"] = self.provider_model_map[provider].get(self.model, self.model)
|
3308 |
|
3309 |
if self.provider_specific_args is not None:
|
3310 |
-
provider_args =
|
3311 |
if provider_args is not None:
|
3312 |
args.update(provider_args)
|
3313 |
|
@@ -3342,6 +3464,7 @@ class HFOptionSelectingInferenceEngine(InferenceEngine, TorchDeviceMixin):
|
|
3342 |
|
3343 |
This class uses models from the HuggingFace Transformers library to calculate log probabilities for text inputs.
|
3344 |
"""
|
|
|
3345 |
label = "hf_option_selection"
|
3346 |
model_name: str
|
3347 |
batch_size: int
|
@@ -3368,10 +3491,8 @@ class HFOptionSelectingInferenceEngine(InferenceEngine, TorchDeviceMixin):
|
|
3368 |
path,
|
3369 |
)
|
3370 |
self.model = AutoModelForCausalLM.from_pretrained(
|
3371 |
-
|
3372 |
-
|
3373 |
-
self.device
|
3374 |
-
)
|
3375 |
# Set pad_token if it doesn't exist
|
3376 |
if self.tokenizer.pad_token is None:
|
3377 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
61 |
while batch := list(islice(it, n)):
|
62 |
yield batch
|
63 |
|
64 |
+
|
65 |
class StandardAPIParamsMixin(Artifact):
|
66 |
model: str
|
67 |
frequency_penalty: Optional[float] = None
|
|
|
158 |
|
159 |
class InferenceEngine(Artifact):
|
160 |
"""Abstract base class for inference."""
|
161 |
+
|
162 |
cache_batch_size: int = 100
|
163 |
use_cache: bool = True
|
164 |
|
|
|
208 |
instance_str = json.dumps(record, sort_keys=True)
|
209 |
return hashlib.md5(instance_str.encode()).hexdigest()
|
210 |
|
211 |
+
def verify_infer_inputs(
|
212 |
+
self, dataset: Union[List[Dict[str, Any]], Dataset], return_meta_data: bool
|
213 |
+
):
|
214 |
if not isoftype(dataset, Union[List[Dict[str, Any]], Dataset]):
|
215 |
raise Exception(
|
216 |
"Dataset passed to infer() is not list of dictionaries or Huggingface Dataset"
|
|
|
240 |
if self.use_cache:
|
241 |
number_of_batches = len(dataset) // self.cache_batch_size + 1
|
242 |
result = []
|
243 |
+
for batch_index, batch in enumerate(
|
244 |
+
batched(dataset, self.cache_batch_size)
|
245 |
+
):
|
246 |
cached_results = []
|
247 |
missing_examples = []
|
248 |
for i, item in enumerate(batch):
|
249 |
cache_key = self._get_cache_key(item)
|
250 |
cached_value = self._cache.get(cache_key)
|
251 |
if cached_value is not None:
|
252 |
+
cached_results.append(
|
253 |
+
(i, cached_value)
|
254 |
+
) # each element is index in batch, and value
|
255 |
else:
|
256 |
+
missing_examples.append(
|
257 |
+
(i, item)
|
258 |
+
) # each element is index in batch and example
|
259 |
# infare on missing examples only, without indices
|
260 |
|
261 |
+
logger.info(
|
262 |
+
f"Inferring batch {batch_index + 1} / {number_of_batches} with {len(missing_examples)} instances (found {len(cached_results)} instances in {self._cache.directory})"
|
263 |
+
)
|
264 |
+
if len(missing_examples) > 0:
|
265 |
+
inferred_results = self._infer(
|
266 |
+
[e[1] for e in missing_examples], return_meta_data
|
267 |
+
)
|
268 |
# recombined to index and value
|
269 |
+
inferred_results = list(
|
270 |
+
zip([e[0] for e in missing_examples], inferred_results)
|
271 |
+
)
|
272 |
# Add missing examples to cache
|
273 |
+
for (_, item), (_, prediction) in zip(
|
274 |
+
missing_examples, inferred_results
|
275 |
+
):
|
276 |
if prediction is None:
|
277 |
continue
|
278 |
cache_key = self._get_cache_key(item)
|
279 |
self._cache[cache_key] = prediction
|
280 |
else:
|
281 |
+
inferred_results = []
|
282 |
# Combine cached and inferred results in original order
|
283 |
+
batch_predictions = [
|
284 |
+
p[1] for p in sorted(cached_results + inferred_results)
|
285 |
+
]
|
286 |
result.extend(batch_predictions)
|
287 |
else:
|
288 |
result = self._infer(dataset, return_meta_data)
|
|
|
432 |
low_cpu_mem_usage: bool = True
|
433 |
torch_dtype: str = "torch.float16"
|
434 |
|
435 |
+
batch_size: int = 1
|
436 |
+
|
437 |
model: Any = InternalField(default=None, name="Inference object")
|
438 |
processor: Any = InternalField(default=None, name="Input processor (tokenizer)")
|
439 |
|
|
|
638 |
class HFAutoModelInferenceEngine(HFInferenceEngineBase):
|
639 |
label: str = "hf_auto_model"
|
640 |
|
641 |
+
use_fp16: bool = True
|
642 |
+
load_in_8bit: bool = False
|
643 |
+
|
644 |
+
device_map: Any = None
|
645 |
+
|
646 |
+
padding: bool = True
|
647 |
+
truncation: bool = True
|
648 |
+
padding_side: str = "left" # for decoder only models
|
649 |
+
|
650 |
+
chat_kwargs_dict: dict = {}
|
651 |
+
|
652 |
def _init_processor(self):
|
653 |
from transformers import AutoTokenizer
|
654 |
|
655 |
self.processor = AutoTokenizer.from_pretrained(
|
656 |
pretrained_model_name_or_path=self.model_name,
|
657 |
use_fast=self.use_fast_tokenizer,
|
|
|
|
|
658 |
)
|
659 |
|
660 |
+
def _get_model_args(self) -> Dict[str, Any]:
|
661 |
+
import torch
|
662 |
+
from transformers import BitsAndBytesConfig
|
663 |
+
|
664 |
+
args = {}
|
665 |
+
|
666 |
+
if self.load_in_8bit:
|
667 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=self.load_in_8bit)
|
668 |
+
args["quantization_config"] = quantization_config
|
669 |
+
elif self.use_fp16:
|
670 |
+
if self.device == torch.device("mps"):
|
671 |
+
args["torch_dtype"] = torch.float16
|
672 |
+
else:
|
673 |
+
args["torch_dtype"] = torch.bfloat16
|
674 |
+
|
675 |
+
# We do this, because in some cases, using device:auto will offload some weights to the cpu
|
676 |
+
# (even though the model might *just* fit to a single gpu), even if there is a gpu available, and this will
|
677 |
+
# cause an error because the data is always on the gpu
|
678 |
+
# if torch.cuda.device_count() > 1:
|
679 |
+
# assert self.device == torch.device(0)
|
680 |
+
args["device_map"] = "auto"
|
681 |
+
# else:
|
682 |
+
# if not self.load_in_8bit:
|
683 |
+
# args["device"] = self.device
|
684 |
+
|
685 |
+
return args
|
686 |
+
|
687 |
def _init_model(self):
|
688 |
from transformers import (
|
689 |
AutoConfig,
|
|
|
697 |
else AutoModelForCausalLM
|
698 |
)
|
699 |
|
700 |
+
model_args = self._get_model_args()
|
701 |
+
|
702 |
self.model = model_class.from_pretrained(
|
703 |
pretrained_model_name_or_path=self.model_name,
|
704 |
trust_remote_code=True,
|
705 |
+
**model_args,
|
|
|
706 |
)
|
707 |
if self.device_map is None:
|
708 |
self.model.to(self.device)
|
|
|
710 |
def prepare_inputs(self, data: Iterable) -> Mapping:
|
711 |
if isinstance(data[0], list):
|
712 |
data = self.processor.apply_chat_template(
|
713 |
+
data,
|
714 |
+
tokenize=False,
|
715 |
+
add_generation_prompt=True,
|
716 |
+
**self.chat_kwargs_dict,
|
717 |
)
|
718 |
+
|
719 |
+
if self.processor.pad_token is None:
|
720 |
+
self.processor.pad_token_id = self.model.config.eos_token_id[0]
|
721 |
+
|
722 |
return self.processor(
|
723 |
data,
|
|
|
|
|
724 |
return_tensors="pt",
|
725 |
+
padding=self.padding,
|
726 |
+
truncation=self.truncation,
|
727 |
+
padding_side=self.padding_side,
|
728 |
).to(self.device or self.device_map)
|
729 |
|
730 |
def _infer_fn(
|
|
|
733 |
return_meta_data: bool,
|
734 |
return_logprobs: bool,
|
735 |
) -> Union[List[str], List[Dict], List[TextGenerationInferenceOutput]]:
|
736 |
+
"""Performs inference on the dataset in batches.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
737 |
|
738 |
+
Args:
|
739 |
+
dataset: A list of dictionaries or a Dataset object containing the input data.
|
740 |
+
Each item should have a "source" key.
|
741 |
+
return_meta_data: Whether to include metadata in the output.
|
742 |
+
return_logprobs: Whether to return log probabilities along with the output.
|
743 |
|
744 |
+
Returns:
|
745 |
+
A list of outputs, which can be strings, dictionaries (if metadata is returned),
|
746 |
+
or TextGenerationInferenceOutput objects (if logprobs are returned).
|
747 |
+
"""
|
748 |
+
all_final_outputs = [] # List to store results from all batches
|
749 |
|
750 |
+
for i in tqdm(
|
751 |
+
range(0, len(dataset), self.batch_size),
|
752 |
+
desc=f"Running inference in batches of {self.batch_size}",
|
753 |
+
):
|
754 |
+
# Get the current batch
|
755 |
+
batch_data = dataset[i : i + self.batch_size]
|
756 |
+
batch_sources = [instance["source"] for instance in batch_data]
|
757 |
+
|
758 |
+
# --- Process the current batch ---
|
759 |
+
# 1. Tokenize inputs for the batch
|
760 |
+
tokenized_inputs = self.prepare_inputs(batch_sources)
|
761 |
+
|
762 |
+
# 2. Determine input length (handle encoder-decoder models)
|
763 |
+
input_length = (
|
764 |
+
1
|
765 |
+
if self.model.config.is_encoder_decoder
|
766 |
+
else tokenized_inputs.input_ids.shape[1]
|
767 |
+
)
|
768 |
|
769 |
+
# 3. Make predictions for the batch
|
770 |
+
predictions = self.make_predictions(tokenized_inputs)
|
771 |
+
sequences = predictions.sequences # Sequences for the current batch
|
772 |
+
|
773 |
+
# 4. Decode tokens for the batch
|
774 |
+
string_tokens_batch = [
|
775 |
+
self.decode_tokens(sequence, input_length) for sequence in sequences
|
776 |
+
]
|
777 |
+
|
778 |
+
# 5. Calculate logprobs or create strings for the batch
|
779 |
+
final_outputs_batch = (
|
780 |
+
self.get_logprobs(predictions, string_tokens_batch)
|
781 |
+
if return_logprobs
|
782 |
+
else [
|
783 |
+
self.create_string_from_tokens(strings)
|
784 |
+
for strings in string_tokens_batch
|
785 |
+
]
|
786 |
)
|
787 |
+
|
788 |
+
# 6. Create return objects for the batch
|
789 |
+
batch_results = [
|
790 |
+
self.get_return_object(
|
791 |
+
output=final_outputs_batch[
|
792 |
+
j
|
793 |
+
], # Output for the j-th item in the batch
|
794 |
+
output_tokens=len(string_tokens_batch[j]),
|
795 |
+
inp=batch_data[j]["source"], # Original input for the j-th item
|
796 |
+
inp_tokens=len(tokenized_inputs.encodings[j].tokens)
|
797 |
+
if tokenized_inputs.encodings is not None
|
798 |
+
else None,
|
799 |
+
return_meta_data=return_meta_data,
|
800 |
+
)
|
801 |
+
for j in range(
|
802 |
+
len(sequences)
|
803 |
+
) # Iterate through items in the current batch
|
804 |
+
]
|
805 |
+
|
806 |
+
# Add results from this batch to the overall list
|
807 |
+
all_final_outputs.extend(batch_results)
|
808 |
+
# --- End of batch processing ---
|
809 |
+
|
810 |
+
return all_final_outputs
|
811 |
|
812 |
def _infer(
|
813 |
self,
|
|
|
991 |
|
992 |
model_class = (
|
993 |
AutoPeftModelForSeq2SeqLM
|
994 |
+
if AutoConfig.from_pretrained(self.peft_config.base_model_name_or_path).is_encoder_decoder
|
995 |
else AutoPeftModelForCausalLM
|
996 |
)
|
997 |
+
path = self.model_name
|
998 |
if settings.hf_offline_models_path is not None:
|
999 |
path = os.path.join(settings.hf_offline_models_path, path)
|
1000 |
|
|
|
1005 |
low_cpu_mem_usage=self.low_cpu_mem_usage,
|
1006 |
torch_dtype=self._get_torch_dtype(),
|
1007 |
)
|
1008 |
+
self.model = self.model.to(dtype=self._get_torch_dtype()) # Make sure that base model and adapter use same dtype
|
1009 |
if self.device_map is None:
|
1010 |
self.model.to(self.device)
|
1011 |
|
|
|
1056 |
except Exception:
|
1057 |
try:
|
1058 |
from peft import PeftConfig
|
1059 |
+
|
1060 |
# If full model loading fails, try loading as a PEFT adapter
|
1061 |
peft_config = PeftConfig.from_pretrained(path)
|
1062 |
|
1063 |
if not peft_config.base_model_name_or_path:
|
1064 |
+
raise ValueError(
|
1065 |
+
f"Base model name not found in PEFT config for {path}"
|
1066 |
+
)
|
1067 |
|
1068 |
# Load the base model's config
|
1069 |
+
config = AutoConfig.from_pretrained(
|
1070 |
+
peft_config.base_model_name_or_path, trust_remote_code=True
|
1071 |
+
)
|
1072 |
except Exception as err2:
|
1073 |
+
raise ValueError(
|
1074 |
+
f"Could not determine model type for: {path}"
|
1075 |
+
) from err2
|
1076 |
|
1077 |
+
self.task = (
|
1078 |
+
"text2text-generation" if config.is_encoder_decoder else "text-generation"
|
1079 |
+
)
|
1080 |
|
1081 |
def _get_model_args(self) -> Dict[str, Any]:
|
1082 |
import torch
|
|
|
1421 |
for option in instance["task_data"]["options"]
|
1422 |
]
|
1423 |
|
1424 |
+
dataset_with_options_logprobs: List[List[Dict[str, Union[float, str]]]] = (
|
1425 |
+
self.get_options_log_probs(dataset_with_options)
|
1426 |
+
)
|
1427 |
|
1428 |
dataset_iterator = iter(dataset_with_options_logprobs)
|
1429 |
|
|
|
1496 |
def _get_credentials():
|
1497 |
from genai import Credentials
|
1498 |
|
1499 |
+
api_key_env_var_name = "GENAI_KEY" # pragma: allowlist secret
|
1500 |
api_key = os.environ.get(api_key_env_var_name)
|
1501 |
|
1502 |
assert api_key is not None, (
|
|
|
1582 |
predict_results = []
|
1583 |
for prediction in predictions:
|
1584 |
result: TextGenerationResult = prediction.results[0]
|
1585 |
+
assert isinstance(result.generated_tokens, list), (
|
1586 |
+
"result.generated_tokens should be a list"
|
1587 |
+
)
|
1588 |
|
1589 |
predict_result = []
|
1590 |
for base_token in result.generated_tokens:
|
|
|
1829 |
@run_with_imap
|
1830 |
def _get_chat_completion(self, instance, return_meta_data):
|
1831 |
import openai
|
1832 |
+
|
1833 |
messages = self.to_messages(instance)
|
1834 |
try:
|
1835 |
response = self.client.chat.completions.create(
|
|
|
1841 |
return self.get_return_object(prediction, response, return_meta_data)
|
1842 |
# catch in case of content_filtering failure
|
1843 |
except openai.BadRequestError as e:
|
1844 |
+
logging.error(
|
1845 |
+
f"Error predicting instance {messages}:{e}. Returning empty prediction"
|
1846 |
+
)
|
1847 |
+
return TextGenerationInferenceOutput(
|
1848 |
+
prediction="-", input_tokens=0, output_tokens=0
|
1849 |
+
)
|
1850 |
|
1851 |
@run_with_imap
|
1852 |
def _get_logprobs(self, instance, return_meta_data):
|
1853 |
import openai
|
1854 |
+
|
1855 |
messages = self.to_messages(instance)
|
1856 |
try:
|
1857 |
response = self.client.chat.completions.create(
|
|
|
1872 |
return self.get_return_object(pred_output, response, return_meta_data)
|
1873 |
# catch in case of content_filtering failure
|
1874 |
except openai.BadRequestError as e:
|
1875 |
+
logging.error(
|
1876 |
+
f"Error predicting instance {messages}:{e}. Returning empty prediction"
|
1877 |
+
)
|
1878 |
+
prediction = [{"top_tokens": [{"text": "-", "logprob": 0}]}]
|
1879 |
+
return TextGenerationInferenceOutput(
|
1880 |
+
prediction=prediction, input_tokens=0, output_tokens=0
|
1881 |
+
)
|
1882 |
|
1883 |
def get_return_object(self, predict_result, response, return_meta_data):
|
1884 |
if return_meta_data:
|
|
|
1912 |
api_version = self.credentials.get(
|
1913 |
"api_version", os.environ.get("OPENAI_API_VERSION", None)
|
1914 |
)
|
1915 |
+
assert api_version and azure_openapi_host, (
|
1916 |
+
"Error while trying to run AzureOpenAIInferenceEngine: Missing environment variable param AZURE_OPENAI_HOST or OPENAI_API_VERSION"
|
1917 |
+
)
|
1918 |
api_url = f"{azure_openapi_host}/openai/deployments/{self.model_name}/chat/completions?api-version={api_version}"
|
1919 |
|
1920 |
return {"api_key": api_key, "api_url": api_url, "api_version": api_version}
|
|
|
1941 |
label: str = "rits"
|
1942 |
data_classification_policy = ["public", "proprietary"]
|
1943 |
|
1944 |
+
model_names_dict = {"microsoft/phi-4": "microsoft-phi-4"}
|
|
|
|
|
1945 |
|
1946 |
def get_default_headers(self):
|
1947 |
return {"RITS_API_KEY": self.credentials["api_key"]}
|
|
|
2009 |
from together import Together
|
2010 |
from together.types.models import ModelType
|
2011 |
|
2012 |
+
api_key_env_var_name = "TOGETHER_API_KEY" # pragma: allowlist secret
|
2013 |
api_key = os.environ.get(api_key_env_var_name)
|
2014 |
assert api_key is not None, (
|
2015 |
f"Error while trying to run TogetherAiInferenceEngine."
|
|
|
2024 |
together_model.id: together_model.type for together_model in together_models
|
2025 |
}
|
2026 |
model_type = together_model_id_to_type.get(self.model_name)
|
2027 |
+
assert model_type is not None, (
|
2028 |
+
f"Could not find model {self.model_name} in Together AI model list"
|
2029 |
+
)
|
2030 |
assert model_type in [ModelType.CHAT, ModelType.LANGUAGE, ModelType.CODE], (
|
2031 |
f"Together AI model type {model_type} is not supported; "
|
2032 |
"supported types are 'chat', 'language' and 'code'."
|
|
|
2205 |
def verify(self):
|
2206 |
super().verify()
|
2207 |
|
2208 |
+
assert self.model_name or (
|
2209 |
+
self.deployment_id and not (self.model_name and self.deployment_id)
|
2210 |
+
), (
|
2211 |
+
"Either 'model_name' or 'deployment_id' must be specified, but not both at the same time."
|
2212 |
+
)
|
2213 |
|
2214 |
# def process_data_before_dump(self, data):
|
2215 |
# if "credentials" in data:
|
|
|
2228 |
self._verify_wml_credentials(self.credentials)
|
2229 |
return APIClient(
|
2230 |
credentials=Credentials(
|
2231 |
+
api_key=self.credentials["api_key"], url=self.credentials["url"]
|
|
|
2232 |
),
|
2233 |
project_id=self.credentials.get("project_id", None),
|
2234 |
+
space_id=self.credentials.get("space_id", None),
|
2235 |
+
)
|
2236 |
|
2237 |
@staticmethod
|
2238 |
def _read_wml_credentials_from_env() -> CredentialsWML:
|
|
|
2300 |
"['url', 'api_key', 'username', 'password']."
|
2301 |
)
|
2302 |
|
2303 |
+
assert credentials.get("url"), (
|
2304 |
+
"'url' is a mandatory key for WML credentials dict."
|
2305 |
+
)
|
2306 |
assert "space_id" in credentials or "project_id" in credentials, (
|
2307 |
"Either 'space_id' or 'project_id' must be provided "
|
2308 |
"as keys for WML credentials dict."
|
|
|
2703 |
return True
|
2704 |
|
2705 |
def to_messages(self, instance: Union[Dict, List]) -> List[List[Dict[str, Any]]]:
|
2706 |
+
if isinstance(instance["source"], str) and self.check_instance_contains_image(
|
2707 |
+
instance
|
2708 |
+
):
|
2709 |
return self._create_messages_from_instance(instance)
|
2710 |
|
2711 |
messages = super().to_messages(instance)
|
|
|
3029 |
|
3030 |
|
3031 |
class VLLMInferenceEngine(InferenceEngine, PackageRequirementsMixin, VLLMParamsMixin):
|
3032 |
+
label = "vllm"
|
3033 |
|
3034 |
def get_engine_id(self):
|
3035 |
return get_model_and_label_id(self.model, self.label)
|
|
|
3131 |
self.inference_type = "litellm"
|
3132 |
from litellm import acompletion
|
3133 |
|
|
|
3134 |
self._completion = acompletion
|
3135 |
# Initialize a semaphore to limit concurrency
|
3136 |
self._semaphore = asyncio.Semaphore(round(self.max_requests_per_second))
|
|
|
3151 |
response = await self._completion(
|
3152 |
messages=messages,
|
3153 |
max_retries=self.max_retries,
|
|
|
3154 |
drop_params=False,
|
3155 |
**self.credentials,
|
3156 |
**kwargs,
|
|
|
3241 |
|
3242 |
label: str = "cross_provider"
|
3243 |
provider: Optional[_supported_apis] = None
|
3244 |
+
provider_specific_args: Optional[Dict[str, Dict[str, str]]] = None
|
3245 |
|
3246 |
provider_model_map: Dict[_supported_apis, Dict[str, str]] = {
|
3247 |
+
"watsonx-sdk": { # checked from ibm_watsonx_ai.APIClient().foundation_models.ChatModels
|
3248 |
"granite-20b-code-instruct": "ibm/granite-20b-code-instruct",
|
3249 |
"granite-3-2-8b-instruct": "ibm/granite-3-2-8b-instruct",
|
3250 |
"granite-3-2b-instruct": "ibm/granite-3-2b-instruct",
|
|
|
3271 |
"llama-3-1-70b-instruct": "together_ai/meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
3272 |
"llama-3-1-405b-instruct": "together_ai/meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
3273 |
"llama-3-2-1b-instruct": "together_ai/togethercomputer/llama-3-2-1b-instruct",
|
3274 |
+
"llama-3-3-70b-instruct": "together_ai/meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
3275 |
},
|
3276 |
"aws": {
|
3277 |
"llama-3-8b-instruct": "bedrock/meta.llama3-8b-instruct-v1:0",
|
|
|
3285 |
"llama-3-1-405b-instruct": "llama3.1:405b",
|
3286 |
"llama-3-2-1b-instruct": "llama3.2:1b",
|
3287 |
"llama-3-2-3b-instruct": "llama3.2:3b",
|
3288 |
+
"llama-3-3-70b-instruct": "llama3.3",
|
3289 |
},
|
3290 |
"bam": {
|
3291 |
"granite-3-8b-instruct": "ibm/granite-8b-instruct-preview-4k",
|
|
|
3360 |
"llama-3-1-405b-instruct": "vertex_ai/meta/llama-3.1-405b-instruct-maas",
|
3361 |
},
|
3362 |
"replicate": {
|
3363 |
+
"granite-3-2-8b-instruct": "replicate/ibm-granite/granite-3.2-8b-instruct",
|
3364 |
+
"granite-vision-3-2-2b": "replicate/ibm-granite/granite-vision-3.2-2b",
|
|
|
|
|
3365 |
"granite-3-1-8b-instruct": "replicate/ibm-granite/granite-3.1-8b-instruct",
|
3366 |
+
"granite-3-1-2b-instruct": "replicate/ibm-granite/granite-3.1-2b-instruct",
|
3367 |
+
"granite-3-8b-instruct": "replicate/ibm-granite/granite-3.0-8b-instruct",
|
3368 |
+
"granite-3-2b-instruct": "replicate/ibm-granite/granite-3.0-2b-instruct",
|
3369 |
"granite-8b-code-instruct-128k": "replicate/ibm-granite/granite-8b-code-instruct-128k",
|
3370 |
+
"granite-20b-code-instruct-8k": "replicate/ibm-granite/granite-20b-code-instruct-8k",
|
3371 |
"llama-2-13b": "replicate/meta/llama-2-13b",
|
3372 |
"llama-2-13b-chat": "replicate/meta/llama-2-13b-chat",
|
3373 |
"llama-2-70b": "replicate/meta/llama-2-70b",
|
|
|
3384 |
"mixtral-8x7b-instruct-v0.1": "replicate/mistralai/mixtral-8x7b-instruct-v0.1",
|
3385 |
},
|
3386 |
}
|
3387 |
+
provider_model_map["watsonx"] = {
|
3388 |
+
k: f"watsonx/{v}" for k, v in provider_model_map["watsonx-sdk"].items()
|
3389 |
+
}
|
3390 |
|
3391 |
_provider_to_base_class = {
|
3392 |
"watsonx": LiteLLMInferenceEngine,
|
|
|
3429 |
args["model"] = self.provider_model_map[provider].get(self.model, self.model)
|
3430 |
|
3431 |
if self.provider_specific_args is not None:
|
3432 |
+
provider_args = self.provider_specific_args.get(provider)
|
3433 |
if provider_args is not None:
|
3434 |
args.update(provider_args)
|
3435 |
|
|
|
3464 |
|
3465 |
This class uses models from the HuggingFace Transformers library to calculate log probabilities for text inputs.
|
3466 |
"""
|
3467 |
+
|
3468 |
label = "hf_option_selection"
|
3469 |
model_name: str
|
3470 |
batch_size: int
|
|
|
3491 |
path,
|
3492 |
)
|
3493 |
self.model = AutoModelForCausalLM.from_pretrained(
|
3494 |
+
path,
|
3495 |
+
).to(self.device)
|
|
|
|
|
3496 |
# Set pad_token if it doesn't exist
|
3497 |
if self.tokenizer.pad_token is None:
|
3498 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
llm_as_judge.py
CHANGED
@@ -240,7 +240,7 @@ class LLMJudgeDirect(LLMJudge):
|
|
240 |
main_score = "llm_as_judge"
|
241 |
"""The primary score name used in the results. By default, it will take the value of the criteria name (if only one criteria is being used for evaluation) or "llm_as_judge" otherwise."""
|
242 |
reduction_map = {"mean": ["llm_as_judge"]}
|
243 |
-
"""A mapping used for score aggregation. By default, it will take the value of
|
244 |
|
245 |
def prepare(self):
|
246 |
super().prepare()
|
@@ -420,7 +420,7 @@ class LLMJudgeDirect(LLMJudge):
|
|
420 |
This method evaluates the quality of of the predictions by calculating scores for each instance based on a criterion.
|
421 |
|
422 |
Returns:
|
423 |
-
|
424 |
List[Dict]
|
425 |
A list of dictionaries containing the evaluation results for each instance. The results include the computed scores for each prediction. Each result will have the `score_name` as a prefix, which may be the criterion name if only one used, or "llm_as_judge" if several criteria were used.
|
426 |
|
@@ -647,7 +647,7 @@ class LLMJudgePairwise(LLMJudge):
|
|
647 |
main_score = "1_winrate"
|
648 |
"""The main score metric for pairwise evaluation. By default, its value is `1_winrate`, and will take the value of the winrate of the first system."""
|
649 |
reduction_map = {"mean": ["score"]}
|
650 |
-
"""A mapping specifying how scores should be reduced. By default, it will be
|
651 |
|
652 |
def prepare(self):
|
653 |
"""Prepares the pairwise comparison by initializing the necessary templates and tasks. These tasks will be used to assess, summarize, and select options from candidate responses."""
|
@@ -937,7 +937,7 @@ class LLMJudgePairwise(LLMJudge):
|
|
937 |
task_data (List[Dict[str, str]]): Task data to be used for evaluation.
|
938 |
|
939 |
Returns:
|
940 |
-
|
941 |
List[Dict[str,Dict]]
|
942 |
The results of the evaluation, including winrate, ranking, and other metrics.
|
943 |
|
|
|
240 |
main_score = "llm_as_judge"
|
241 |
"""The primary score name used in the results. By default, it will take the value of the criteria name (if only one criteria is being used for evaluation) or "llm_as_judge" otherwise."""
|
242 |
reduction_map = {"mean": ["llm_as_judge"]}
|
243 |
+
"""A mapping used for score aggregation. By default, it will take the value of ``{'mean': [<default_main_score_name>]}`` ."""
|
244 |
|
245 |
def prepare(self):
|
246 |
super().prepare()
|
|
|
420 |
This method evaluates the quality of of the predictions by calculating scores for each instance based on a criterion.
|
421 |
|
422 |
Returns:
|
423 |
+
--------
|
424 |
List[Dict]
|
425 |
A list of dictionaries containing the evaluation results for each instance. The results include the computed scores for each prediction. Each result will have the `score_name` as a prefix, which may be the criterion name if only one used, or "llm_as_judge" if several criteria were used.
|
426 |
|
|
|
647 |
main_score = "1_winrate"
|
648 |
"""The main score metric for pairwise evaluation. By default, its value is `1_winrate`, and will take the value of the winrate of the first system."""
|
649 |
reduction_map = {"mean": ["score"]}
|
650 |
+
"""A mapping specifying how scores should be reduced. By default, it will be ``{'main': ['score']}`` ."""
|
651 |
|
652 |
def prepare(self):
|
653 |
"""Prepares the pairwise comparison by initializing the necessary templates and tasks. These tasks will be used to assess, summarize, and select options from candidate responses."""
|
|
|
937 |
task_data (List[Dict[str, str]]): Task data to be used for evaluation.
|
938 |
|
939 |
Returns:
|
940 |
+
--------
|
941 |
List[Dict[str,Dict]]
|
942 |
The results of the evaluation, including winrate, ranking, and other metrics.
|
943 |
|
metric.py
CHANGED
@@ -18,6 +18,7 @@ from .dialog_operators import __file__ as _
|
|
18 |
from .dict_utils import __file__ as _
|
19 |
from .error_utils import __file__ as _
|
20 |
from .eval_utils import __file__ as _
|
|
|
21 |
from .file_utils import __file__ as _
|
22 |
from .formats import __file__ as _
|
23 |
from .fusion import __file__ as _
|
|
|
18 |
from .dict_utils import __file__ as _
|
19 |
from .error_utils import __file__ as _
|
20 |
from .eval_utils import __file__ as _
|
21 |
+
from .evaluate_cli import __file__ as _
|
22 |
from .file_utils import __file__ as _
|
23 |
from .formats import __file__ as _
|
24 |
from .fusion import __file__ as _
|
metrics.py
CHANGED
@@ -71,6 +71,7 @@ settings = get_settings()
|
|
71 |
|
72 |
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
|
73 |
|
|
|
74 |
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
75 |
def hf_evaluate_load(path: str, *args, **kwargs):
|
76 |
if settings.hf_offline_metrics_path is not None:
|
@@ -792,6 +793,7 @@ class MetricWithConfidenceInterval(Metric):
|
|
792 |
n_resamples: int = None
|
793 |
confidence_level: float = 0.95
|
794 |
ci_scores: List[str] = None
|
|
|
795 |
|
796 |
@staticmethod
|
797 |
def new_random_generator():
|
@@ -907,6 +909,7 @@ class MetricWithConfidenceInterval(Metric):
|
|
907 |
n_resamples=self.n_resamples,
|
908 |
confidence_level=self.confidence_level,
|
909 |
random_state=self.new_random_generator(),
|
|
|
910 |
).confidence_interval
|
911 |
full_score_name = ci_score_prefix + score_name
|
912 |
result[f"{full_score_name}_ci_low"] = ci.low
|
@@ -1007,6 +1010,7 @@ class MetricWithConfidenceInterval(Metric):
|
|
1007 |
n_resamples=self.n_resamples,
|
1008 |
confidence_level=self.confidence_level,
|
1009 |
random_state=random_gen,
|
|
|
1010 |
).confidence_interval
|
1011 |
result["score_ci_low"] = float(ci.low)
|
1012 |
result["score_ci_high"] = float(ci.high)
|
@@ -1193,9 +1197,9 @@ class BulkInstanceMetric(StreamOperator, MetricWithConfidenceInterval):
|
|
1193 |
)
|
1194 |
|
1195 |
for reduction, fields in self.reduction_map.items():
|
1196 |
-
assert (
|
1197 |
-
reduction
|
1198 |
-
)
|
1199 |
|
1200 |
if reduction == "mean":
|
1201 |
for field_name in fields:
|
@@ -1464,12 +1468,12 @@ class InstanceMetric(StreamOperator, MetricWithConfidenceInterval):
|
|
1464 |
def _validate_group_mean_task_data(self, instance):
|
1465 |
# instances need to all have task_data field with field group_id
|
1466 |
assert "task_data" in instance, "each instance must have an task_data field"
|
1467 |
-
assert isinstance(
|
1468 |
-
instance
|
1469 |
-
)
|
1470 |
-
assert (
|
1471 |
-
"
|
1472 |
-
)
|
1473 |
|
1474 |
def _validate_group_mean_reduction(self):
|
1475 |
"""Ensure that group_mean reduction_map is properly formatted.
|
@@ -1522,30 +1526,30 @@ class InstanceMetric(StreamOperator, MetricWithConfidenceInterval):
|
|
1522 |
2 'Why are ants eating my food?' 'original'
|
1523 |
"""
|
1524 |
# validate the reduction_map
|
1525 |
-
assert (
|
1526 |
-
"group_mean"
|
1527 |
-
)
|
1528 |
fields = self.reduction_map["group_mean"]
|
1529 |
# for group_mean, expects a dict
|
1530 |
assert isinstance(fields, dict)
|
1531 |
-
assert (
|
1532 |
-
"agg_func
|
1533 |
-
)
|
1534 |
-
assert isinstance(
|
1535 |
-
fields[
|
1536 |
-
)
|
1537 |
-
assert (
|
1538 |
-
|
1539 |
-
)
|
1540 |
-
assert isinstance(
|
1541 |
-
fields[
|
1542 |
-
)
|
1543 |
-
assert callable(
|
1544 |
-
fields[
|
1545 |
-
)
|
1546 |
-
assert isinstance(
|
1547 |
-
fields[
|
1548 |
-
)
|
1549 |
if "score_fields" in fields:
|
1550 |
assert isinstance(fields["score_fields"], list)
|
1551 |
|
@@ -1553,9 +1557,9 @@ class InstanceMetric(StreamOperator, MetricWithConfidenceInterval):
|
|
1553 |
instance_scores = self.compute_instance_scores(stream)
|
1554 |
global_score = {"num_of_instances": len(instance_scores)}
|
1555 |
for reduction_type, reduction_params in self.reduction_map.items():
|
1556 |
-
assert (
|
1557 |
-
reduction_type
|
1558 |
-
)
|
1559 |
|
1560 |
field_name_full_prefix = ""
|
1561 |
# used for passing to the bootstrapping, depends on whether the groups are fixed or not
|
@@ -1653,7 +1657,9 @@ class InstanceMetric(StreamOperator, MetricWithConfidenceInterval):
|
|
1653 |
assert (
|
1654 |
"task_data" in instance
|
1655 |
and self.subgroup_column in instance["task_data"]
|
1656 |
-
),
|
|
|
|
|
1657 |
|
1658 |
task_data = instance["task_data"] if "task_data" in instance else {}
|
1659 |
|
@@ -2249,15 +2255,15 @@ class MetricPipeline(MultiStreamOperator, Metric):
|
|
2249 |
|
2250 |
def verify(self):
|
2251 |
super().verify()
|
2252 |
-
assert (
|
2253 |
-
|
2254 |
-
)
|
2255 |
-
assert (
|
2256 |
-
|
2257 |
-
)
|
2258 |
-
assert isinstance(
|
2259 |
-
self.metric
|
2260 |
-
)
|
2261 |
if self.postpreprocess_steps is not None:
|
2262 |
depr_message = "Field 'postpreprocess_steps' is deprecated. Please use 'postprocess_steps' for the same purpose."
|
2263 |
warnings.warn(depr_message, DeprecationWarning, stacklevel=2)
|
@@ -2278,9 +2284,9 @@ class MetricPipeline(MultiStreamOperator, Metric):
|
|
2278 |
and isinstance(self.postprocess_steps, list)
|
2279 |
and len(self.postprocess_steps) > 0
|
2280 |
)
|
2281 |
-
assert not (
|
2282 |
-
|
2283 |
-
)
|
2284 |
if has_postpreprocess:
|
2285 |
self.postprocess_steps = self.postpreprocess_steps
|
2286 |
self.prepare_score = SequentialOperator(
|
@@ -2357,10 +2363,14 @@ class HuggingfaceMetric(GlobalMetric):
|
|
2357 |
|
2358 |
assert self.hf_additional_input_fields is None or isoftype(
|
2359 |
self.hf_additional_input_fields, List[str]
|
2360 |
-
),
|
|
|
|
|
2361 |
assert self.hf_additional_input_fields_pass_one_value is None or isoftype(
|
2362 |
self.hf_additional_input_fields_pass_one_value, List[str]
|
2363 |
-
),
|
|
|
|
|
2364 |
|
2365 |
return super().verify()
|
2366 |
|
@@ -2377,25 +2387,25 @@ class HuggingfaceMetric(GlobalMetric):
|
|
2377 |
) -> dict:
|
2378 |
passed_task_data = {}
|
2379 |
for additional_input_field in self.hf_additional_input_fields:
|
2380 |
-
assert (
|
2381 |
-
additional_input_field in task_data[0]
|
2382 |
-
)
|
2383 |
passed_task_data[additional_input_field] = [
|
2384 |
additional_input[additional_input_field]
|
2385 |
for additional_input in task_data
|
2386 |
]
|
2387 |
for additional_input_field in self.hf_additional_input_fields_pass_one_value:
|
2388 |
-
assert (
|
2389 |
-
additional_input_field in task_data[0]
|
2390 |
-
)
|
2391 |
|
2392 |
values = {
|
2393 |
additional_input[additional_input_field]
|
2394 |
for additional_input in task_data
|
2395 |
}
|
2396 |
-
assert (
|
2397 |
-
|
2398 |
-
)
|
2399 |
|
2400 |
passed_task_data[additional_input_field] = next(iter(values))
|
2401 |
|
@@ -2410,22 +2420,22 @@ class HuggingfaceMetric(GlobalMetric):
|
|
2410 |
result[self.main_score] = float(result[self.hf_main_score])
|
2411 |
del result[self.hf_main_score]
|
2412 |
if self.scale != 1.0:
|
2413 |
-
assert (
|
2414 |
-
self.
|
2415 |
-
)
|
2416 |
for key in self.scaled_fields:
|
2417 |
-
assert (
|
2418 |
-
key in result
|
2419 |
-
)
|
2420 |
if isinstance(result[key], list):
|
2421 |
-
assert all(
|
2422 |
-
|
2423 |
-
)
|
2424 |
result[key] = [v / self.scale for v in result[key]]
|
2425 |
else:
|
2426 |
-
assert isinstance(
|
2427 |
-
result[key]
|
2428 |
-
)
|
2429 |
result[key] /= self.scale
|
2430 |
if self.main_score in result:
|
2431 |
result[self.main_score] = float(result[self.main_score])
|
@@ -2452,9 +2462,9 @@ class HuggingfaceBulkMetric(BulkInstanceMetric):
|
|
2452 |
) -> List[Dict[str, Any]]:
|
2453 |
passed_task_data = {}
|
2454 |
for additional_input_field in self.hf_additional_input_fields:
|
2455 |
-
assert (
|
2456 |
-
additional_input_field in task_data[0]
|
2457 |
-
)
|
2458 |
passed_task_data[additional_input_field] = [
|
2459 |
additional_input[additional_input_field]
|
2460 |
for additional_input in task_data
|
@@ -2791,9 +2801,9 @@ class FinQAEval(InstanceMetric):
|
|
2791 |
response = requests.get(url)
|
2792 |
response.raise_for_status()
|
2793 |
content = response.content
|
2794 |
-
assert (
|
2795 |
-
|
2796 |
-
)
|
2797 |
|
2798 |
with open(local_path, "wb") as file:
|
2799 |
file.write(content)
|
@@ -2925,9 +2935,9 @@ class F1MultiLabel(GlobalMetric, PackageRequirementsMixin):
|
|
2925 |
labels=labels_param,
|
2926 |
)
|
2927 |
if isinstance(result[self.metric], numpy.ndarray):
|
2928 |
-
assert len(result[self.metric]) == len(
|
2929 |
-
labels
|
2930 |
-
)
|
2931 |
final_result = {self.main_score: nan_mean(result[self.metric])}
|
2932 |
for i, label in enumerate(labels):
|
2933 |
final_result[self.metric + "_" + label] = result[self.metric][i]
|
@@ -3414,7 +3424,6 @@ class CustomF1(GlobalMetric):
|
|
3414 |
|
3415 |
|
3416 |
class KeyValueExtraction(GlobalMetric):
|
3417 |
-
|
3418 |
prediction_type = Dict[str, str]
|
3419 |
metric: Metric
|
3420 |
single_reference_per_prediction = True
|
@@ -3978,9 +3987,9 @@ class LlamaIndexLLMMetric(InstanceMetric):
|
|
3978 |
prediction_type = str
|
3979 |
reduction_map: Dict[str, List[str]] = None
|
3980 |
openai_models: List[str] = ["gpt-3.5-turbo"]
|
3981 |
-
anthropic_models: List[
|
3982 |
-
|
3983 |
-
|
3984 |
mock_models: List[str] = ["mock"]
|
3985 |
external_api_models = openai_models + anthropic_models
|
3986 |
data_classification_policy = ["public"]
|
@@ -4819,12 +4828,12 @@ def validate_subgroup_types(
|
|
4819 |
for subgroup_name, score_list in subgroup_scores_dict.items()
|
4820 |
}
|
4821 |
)
|
4822 |
-
assert isinstance(
|
4823 |
-
control_subgroup_types
|
4824 |
-
)
|
4825 |
-
assert isinstance(
|
4826 |
-
comparison_subgroup_types
|
4827 |
-
)
|
4828 |
# make sure each list is unique, so that labels aren't double-counted
|
4829 |
control_subgroup_types = list(set(control_subgroup_types))
|
4830 |
comparison_subgroup_types = list(set(comparison_subgroup_types))
|
@@ -4979,9 +4988,9 @@ def normalized_cohens_h(
|
|
4979 |
|
4980 |
# requires scores to be in [0,1]
|
4981 |
for subgroup_name, score_list in subgroup_scores_dict.items():
|
4982 |
-
assert all(
|
4983 |
-
|
4984 |
-
)
|
4985 |
|
4986 |
# combine all scores from each label (if there are more than 1 in each group) into a list
|
4987 |
group_scores_list = [
|
@@ -5967,9 +5976,9 @@ class RandomForestMetricsEnsemble(MetricsEnsemble):
|
|
5967 |
return json.load(file)
|
5968 |
|
5969 |
def ensemble(self, instance):
|
5970 |
-
assert (
|
5971 |
-
self.weights
|
5972 |
-
)
|
5973 |
ensemble_model = self.decode_forest(self.weights)
|
5974 |
|
5975 |
prediction_lst = []
|
@@ -6378,7 +6387,7 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
6378 |
]
|
6379 |
|
6380 |
prediction_type = "Any" # string representation is compared
|
6381 |
-
sql_timeout =
|
6382 |
|
6383 |
_requirements_list = ["sqlglot", "func_timeout"]
|
6384 |
|
@@ -6445,6 +6454,7 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
6445 |
|
6446 |
Comparison is column order independent, and could optionally be row order independent.
|
6447 |
We interpret "subset" as follows:
|
|
|
6448 |
- For each row in df1, there must be a matching (or superset) row in df2, i.e. the set of values
|
6449 |
in the df1 row is a subset of the set of values in that df2 row. Then do the same check in reverse.
|
6450 |
- If either condition (df1 is subset of df2 OR df2 is subset of df1) is satisfied, return True.
|
@@ -6458,6 +6468,7 @@ class SQLExecutionAccuracy(InstanceMetric):
|
|
6458 |
|
6459 |
Returns:
|
6460 |
bool: True if df1 is a subset of df2 or vice versa, based on the specified row-order condition.
|
|
|
6461 |
"""
|
6462 |
df1_array = df1.values.astype(str)
|
6463 |
df2_array = df2.values.astype(str)
|
|
|
71 |
|
72 |
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
|
73 |
|
74 |
+
|
75 |
@retry_connection_with_exponential_backoff(backoff_factor=2)
|
76 |
def hf_evaluate_load(path: str, *args, **kwargs):
|
77 |
if settings.hf_offline_metrics_path is not None:
|
|
|
793 |
n_resamples: int = None
|
794 |
confidence_level: float = 0.95
|
795 |
ci_scores: List[str] = None
|
796 |
+
ci_method: str = "BCa"
|
797 |
|
798 |
@staticmethod
|
799 |
def new_random_generator():
|
|
|
909 |
n_resamples=self.n_resamples,
|
910 |
confidence_level=self.confidence_level,
|
911 |
random_state=self.new_random_generator(),
|
912 |
+
method=self.ci_method
|
913 |
).confidence_interval
|
914 |
full_score_name = ci_score_prefix + score_name
|
915 |
result[f"{full_score_name}_ci_low"] = ci.low
|
|
|
1010 |
n_resamples=self.n_resamples,
|
1011 |
confidence_level=self.confidence_level,
|
1012 |
random_state=random_gen,
|
1013 |
+
method=self.ci_method
|
1014 |
).confidence_interval
|
1015 |
result["score_ci_low"] = float(ci.low)
|
1016 |
result["score_ci_high"] = float(ci.high)
|
|
|
1197 |
)
|
1198 |
|
1199 |
for reduction, fields in self.reduction_map.items():
|
1200 |
+
assert reduction in self.implemented_reductions, (
|
1201 |
+
f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
|
1202 |
+
)
|
1203 |
|
1204 |
if reduction == "mean":
|
1205 |
for field_name in fields:
|
|
|
1468 |
def _validate_group_mean_task_data(self, instance):
|
1469 |
# instances need to all have task_data field with field group_id
|
1470 |
assert "task_data" in instance, "each instance must have an task_data field"
|
1471 |
+
assert isinstance(instance["task_data"], dict), (
|
1472 |
+
"each instance must have an task_data field that is a dict"
|
1473 |
+
)
|
1474 |
+
assert "group_id" in instance["task_data"], (
|
1475 |
+
"each instance task_data dict must have a key group_id"
|
1476 |
+
)
|
1477 |
|
1478 |
def _validate_group_mean_reduction(self):
|
1479 |
"""Ensure that group_mean reduction_map is properly formatted.
|
|
|
1526 |
2 'Why are ants eating my food?' 'original'
|
1527 |
"""
|
1528 |
# validate the reduction_map
|
1529 |
+
assert "group_mean" in self.reduction_map, (
|
1530 |
+
"reduction_map must have a 'group_mean' key"
|
1531 |
+
)
|
1532 |
fields = self.reduction_map["group_mean"]
|
1533 |
# for group_mean, expects a dict
|
1534 |
assert isinstance(fields, dict)
|
1535 |
+
assert "agg_func" in fields, (
|
1536 |
+
"fields should have a key 'agg_func' whose value is a 3-element list of a function name, function definition, and a boolean indicator"
|
1537 |
+
)
|
1538 |
+
assert isinstance(fields["agg_func"], list), (
|
1539 |
+
"fields['agg_func'] should be a list"
|
1540 |
+
)
|
1541 |
+
assert len(fields["agg_func"]) == 3, (
|
1542 |
+
"fields['agg_func'] should be a 3-element list"
|
1543 |
+
)
|
1544 |
+
assert isinstance(fields["agg_func"][0], str), (
|
1545 |
+
"first item in fields['agg_func'] should be a string name of a function"
|
1546 |
+
)
|
1547 |
+
assert callable(fields["agg_func"][1]), (
|
1548 |
+
"second item in fields['agg_func'] should be a callable function"
|
1549 |
+
)
|
1550 |
+
assert isinstance(fields["agg_func"][2], bool), (
|
1551 |
+
"third item in fields['agg_func'] should be a boolean value"
|
1552 |
+
)
|
1553 |
if "score_fields" in fields:
|
1554 |
assert isinstance(fields["score_fields"], list)
|
1555 |
|
|
|
1557 |
instance_scores = self.compute_instance_scores(stream)
|
1558 |
global_score = {"num_of_instances": len(instance_scores)}
|
1559 |
for reduction_type, reduction_params in self.reduction_map.items():
|
1560 |
+
assert reduction_type in self.implemented_reductions, (
|
1561 |
+
f"Reduction {reduction_type} is not implemented, use one of {self.implemented_reductions}"
|
1562 |
+
)
|
1563 |
|
1564 |
field_name_full_prefix = ""
|
1565 |
# used for passing to the bootstrapping, depends on whether the groups are fixed or not
|
|
|
1657 |
assert (
|
1658 |
"task_data" in instance
|
1659 |
and self.subgroup_column in instance["task_data"]
|
1660 |
+
), (
|
1661 |
+
f"each instance task_data dict must have a key {self.subgroup_column}"
|
1662 |
+
)
|
1663 |
|
1664 |
task_data = instance["task_data"] if "task_data" in instance else {}
|
1665 |
|
|
|
2255 |
|
2256 |
def verify(self):
|
2257 |
super().verify()
|
2258 |
+
assert self.metric is not None, (
|
2259 |
+
f"'metric' is not set in {self.get_metric_name()}"
|
2260 |
+
)
|
2261 |
+
assert self.main_score is not None, (
|
2262 |
+
f"'main_score' is not set in {self.get_metric_name()}"
|
2263 |
+
)
|
2264 |
+
assert isinstance(self.metric, Metric), (
|
2265 |
+
f"'metric' is not set to a Metric class in {self.get_metric_name()} (type{self.metric})"
|
2266 |
+
)
|
2267 |
if self.postpreprocess_steps is not None:
|
2268 |
depr_message = "Field 'postpreprocess_steps' is deprecated. Please use 'postprocess_steps' for the same purpose."
|
2269 |
warnings.warn(depr_message, DeprecationWarning, stacklevel=2)
|
|
|
2284 |
and isinstance(self.postprocess_steps, list)
|
2285 |
and len(self.postprocess_steps) > 0
|
2286 |
)
|
2287 |
+
assert not (has_postpreprocess and has_postprocess), (
|
2288 |
+
"Must define at most one of postpreprocess_steps (which is deprecated) and postprocess_steps (to be used from now on)"
|
2289 |
+
)
|
2290 |
if has_postpreprocess:
|
2291 |
self.postprocess_steps = self.postpreprocess_steps
|
2292 |
self.prepare_score = SequentialOperator(
|
|
|
2363 |
|
2364 |
assert self.hf_additional_input_fields is None or isoftype(
|
2365 |
self.hf_additional_input_fields, List[str]
|
2366 |
+
), (
|
2367 |
+
f"Argument hf_additional_input_fields should be either None or List[str]. It is now: {self.hf_additional_input_fields}."
|
2368 |
+
)
|
2369 |
assert self.hf_additional_input_fields_pass_one_value is None or isoftype(
|
2370 |
self.hf_additional_input_fields_pass_one_value, List[str]
|
2371 |
+
), (
|
2372 |
+
f"Argument hf_additional_input_fields_pass_one_value should be either None or List[str]. It is now: {self.hf_additional_input_fields_pass_one_value}."
|
2373 |
+
)
|
2374 |
|
2375 |
return super().verify()
|
2376 |
|
|
|
2387 |
) -> dict:
|
2388 |
passed_task_data = {}
|
2389 |
for additional_input_field in self.hf_additional_input_fields:
|
2390 |
+
assert additional_input_field in task_data[0], (
|
2391 |
+
f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in task_data: {task_data[0]}"
|
2392 |
+
)
|
2393 |
passed_task_data[additional_input_field] = [
|
2394 |
additional_input[additional_input_field]
|
2395 |
for additional_input in task_data
|
2396 |
]
|
2397 |
for additional_input_field in self.hf_additional_input_fields_pass_one_value:
|
2398 |
+
assert additional_input_field in task_data[0], (
|
2399 |
+
f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in task_data: {task_data[0]}"
|
2400 |
+
)
|
2401 |
|
2402 |
values = {
|
2403 |
additional_input[additional_input_field]
|
2404 |
for additional_input in task_data
|
2405 |
}
|
2406 |
+
assert len(values) == 1, (
|
2407 |
+
f"Values of '{additional_input_field}' field required by {__class__.__name__} should all be the same, but have multiple values {values}"
|
2408 |
+
)
|
2409 |
|
2410 |
passed_task_data[additional_input_field] = next(iter(values))
|
2411 |
|
|
|
2420 |
result[self.main_score] = float(result[self.hf_main_score])
|
2421 |
del result[self.hf_main_score]
|
2422 |
if self.scale != 1.0:
|
2423 |
+
assert self.scaled_fields is not None, (
|
2424 |
+
f"Scaling factor was set to {self.scale}, but no fields specified"
|
2425 |
+
)
|
2426 |
for key in self.scaled_fields:
|
2427 |
+
assert key in result, (
|
2428 |
+
f"Trying to scale field '{key}' which is not in results of metrics: {result}"
|
2429 |
+
)
|
2430 |
if isinstance(result[key], list):
|
2431 |
+
assert all(isinstance(v, float) for v in result[key]), (
|
2432 |
+
"Not all scaled field '{key}' values are floats: {result[key]}"
|
2433 |
+
)
|
2434 |
result[key] = [v / self.scale for v in result[key]]
|
2435 |
else:
|
2436 |
+
assert isinstance(result[key], float), (
|
2437 |
+
"Scaled field '{key}' is not float: {result[key]}"
|
2438 |
+
)
|
2439 |
result[key] /= self.scale
|
2440 |
if self.main_score in result:
|
2441 |
result[self.main_score] = float(result[self.main_score])
|
|
|
2462 |
) -> List[Dict[str, Any]]:
|
2463 |
passed_task_data = {}
|
2464 |
for additional_input_field in self.hf_additional_input_fields:
|
2465 |
+
assert additional_input_field in task_data[0], (
|
2466 |
+
f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in task_data: {task_data[0]}"
|
2467 |
+
)
|
2468 |
passed_task_data[additional_input_field] = [
|
2469 |
additional_input[additional_input_field]
|
2470 |
for additional_input in task_data
|
|
|
2801 |
response = requests.get(url)
|
2802 |
response.raise_for_status()
|
2803 |
content = response.content
|
2804 |
+
assert hashlib.md5(content).hexdigest() == hash_of_script, (
|
2805 |
+
f'URL ("{url}") is different than expected. Make sure you added the right one.'
|
2806 |
+
)
|
2807 |
|
2808 |
with open(local_path, "wb") as file:
|
2809 |
file.write(content)
|
|
|
2935 |
labels=labels_param,
|
2936 |
)
|
2937 |
if isinstance(result[self.metric], numpy.ndarray):
|
2938 |
+
assert len(result[self.metric]) == len(labels), (
|
2939 |
+
f"F1 result ({result[self.metric]}) has more entries than labels ({labels})"
|
2940 |
+
)
|
2941 |
final_result = {self.main_score: nan_mean(result[self.metric])}
|
2942 |
for i, label in enumerate(labels):
|
2943 |
final_result[self.metric + "_" + label] = result[self.metric][i]
|
|
|
3424 |
|
3425 |
|
3426 |
class KeyValueExtraction(GlobalMetric):
|
|
|
3427 |
prediction_type = Dict[str, str]
|
3428 |
metric: Metric
|
3429 |
single_reference_per_prediction = True
|
|
|
3987 |
prediction_type = str
|
3988 |
reduction_map: Dict[str, List[str]] = None
|
3989 |
openai_models: List[str] = ["gpt-3.5-turbo"]
|
3990 |
+
anthropic_models: List[
|
3991 |
+
str
|
3992 |
+
] = [] # this is here for the sake of documentation for future models
|
3993 |
mock_models: List[str] = ["mock"]
|
3994 |
external_api_models = openai_models + anthropic_models
|
3995 |
data_classification_policy = ["public"]
|
|
|
4828 |
for subgroup_name, score_list in subgroup_scores_dict.items()
|
4829 |
}
|
4830 |
)
|
4831 |
+
assert isinstance(control_subgroup_types, list), (
|
4832 |
+
"control_subgroup_types must be a list"
|
4833 |
+
)
|
4834 |
+
assert isinstance(comparison_subgroup_types, list), (
|
4835 |
+
"comparison_subgroup_types must be a list"
|
4836 |
+
)
|
4837 |
# make sure each list is unique, so that labels aren't double-counted
|
4838 |
control_subgroup_types = list(set(control_subgroup_types))
|
4839 |
comparison_subgroup_types = list(set(comparison_subgroup_types))
|
|
|
4988 |
|
4989 |
# requires scores to be in [0,1]
|
4990 |
for subgroup_name, score_list in subgroup_scores_dict.items():
|
4991 |
+
assert all(0 <= score <= 1 for score in score_list), (
|
4992 |
+
f"all {subgroup_name} scores must be in [0,1]"
|
4993 |
+
)
|
4994 |
|
4995 |
# combine all scores from each label (if there are more than 1 in each group) into a list
|
4996 |
group_scores_list = [
|
|
|
5976 |
return json.load(file)
|
5977 |
|
5978 |
def ensemble(self, instance):
|
5979 |
+
assert self.weights is not None, (
|
5980 |
+
"RandomForestMetricsEnsemble must set self.weights before it can be used"
|
5981 |
+
)
|
5982 |
ensemble_model = self.decode_forest(self.weights)
|
5983 |
|
5984 |
prediction_lst = []
|
|
|
6387 |
]
|
6388 |
|
6389 |
prediction_type = "Any" # string representation is compared
|
6390 |
+
sql_timeout = 30.0
|
6391 |
|
6392 |
_requirements_list = ["sqlglot", "func_timeout"]
|
6393 |
|
|
|
6454 |
|
6455 |
Comparison is column order independent, and could optionally be row order independent.
|
6456 |
We interpret "subset" as follows:
|
6457 |
+
|
6458 |
- For each row in df1, there must be a matching (or superset) row in df2, i.e. the set of values
|
6459 |
in the df1 row is a subset of the set of values in that df2 row. Then do the same check in reverse.
|
6460 |
- If either condition (df1 is subset of df2 OR df2 is subset of df1) is satisfied, return True.
|
|
|
6468 |
|
6469 |
Returns:
|
6470 |
bool: True if df1 is a subset of df2 or vice versa, based on the specified row-order condition.
|
6471 |
+
|
6472 |
"""
|
6473 |
df1_array = df1.values.astype(str)
|
6474 |
df2_array = df2.values.astype(str)
|
parsing_utils.py
CHANGED
@@ -51,9 +51,9 @@ def consume_name_val(instring: str) -> Tuple[Any, str]:
|
|
51 |
instring = instring[len(name_val) :].strip()
|
52 |
name_val = name_val.strip()
|
53 |
|
54 |
-
if name_val == "
|
55 |
return (True, instring)
|
56 |
-
if name_val == "
|
57 |
return (False, instring)
|
58 |
if name_val == "None":
|
59 |
return (None, instring)
|
|
|
51 |
instring = instring[len(name_val) :].strip()
|
52 |
name_val = name_val.strip()
|
53 |
|
54 |
+
if name_val.lower() == "true":
|
55 |
return (True, instring)
|
56 |
+
if name_val.lower() == "false":
|
57 |
return (False, instring)
|
58 |
if name_val == "None":
|
59 |
return (None, instring)
|
processors.py
CHANGED
@@ -430,32 +430,86 @@ class AddPrefix(FieldOperator):
|
|
430 |
|
431 |
|
432 |
class GetSQL(FieldOperator):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
def process_value(self, text: str) -> str:
|
434 |
-
"""Extracts the
|
435 |
|
436 |
Args:
|
437 |
-
|
|
|
438 |
|
439 |
Returns:
|
440 |
-
|
|
|
441 |
"""
|
442 |
-
|
443 |
-
|
444 |
-
text,
|
445 |
-
re.IGNORECASE | re.DOTALL,
|
446 |
-
)
|
447 |
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
else:
|
456 |
-
|
457 |
|
458 |
-
|
|
|
|
|
|
|
459 |
|
460 |
|
461 |
class ScaleNumberToZeroOneReturnZeroIfFails(FieldOperator):
|
|
|
430 |
|
431 |
|
432 |
class GetSQL(FieldOperator):
|
433 |
+
"""Operator to extract the most likely SQL query from text, often generated by language models.
|
434 |
+
|
435 |
+
It prioritizes SQL within markdown code blocks (```sql or ```)
|
436 |
+
and defaults to finding the last SELECT statement in the text
|
437 |
+
if no code blocks are found. It attempts to remove trailing text
|
438 |
+
after the first semicolon in the identified query.
|
439 |
+
"""
|
440 |
+
|
441 |
def process_value(self, text: str) -> str:
|
442 |
+
"""Extracts the most plausible SQL query from the given text.
|
443 |
|
444 |
Args:
|
445 |
+
text: The input string potentially containing an SQL query
|
446 |
+
and other text (e.g., explanations, markdown).
|
447 |
|
448 |
Returns:
|
449 |
+
The extracted SQL query string, or a message indicating
|
450 |
+
no query was found.
|
451 |
"""
|
452 |
+
if not isinstance(text, str):
|
453 |
+
return "Input must be a string" # Basic type check
|
|
|
|
|
|
|
454 |
|
455 |
+
sql_query_candidate = None # Renamed to indicate it might need cleanup
|
456 |
+
|
457 |
+
# 1. Try to find ```sql ... ``` code blocks
|
458 |
+
sql_blocks = re.findall(
|
459 |
+
r"```sql\s*(.*?)\s*```", text, re.DOTALL | re.IGNORECASE
|
460 |
+
)
|
461 |
+
if sql_blocks:
|
462 |
+
# Use the content of the last ```sql block
|
463 |
+
sql_query_candidate = sql_blocks[-1].strip()
|
464 |
+
else:
|
465 |
+
# 2. If no ```sql blocks, try to find generic ``` ... ``` blocks
|
466 |
+
generic_blocks = re.findall(r"```\s*(.*?)\s*```", text, re.DOTALL)
|
467 |
+
if generic_blocks:
|
468 |
+
# Check if the last block looks like SQL (starts with SELECT, INSERT, etc.)
|
469 |
+
last_block_content = generic_blocks[-1].strip()
|
470 |
+
# Allow common SQL starting keywords
|
471 |
+
sql_keywords = (
|
472 |
+
r"^(SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|WITH|DROP|TRUNCATE)\b"
|
473 |
+
)
|
474 |
+
if re.match(sql_keywords, last_block_content, re.IGNORECASE):
|
475 |
+
sql_query_candidate = last_block_content
|
476 |
+
|
477 |
+
# 3. If no suitable code blocks found, search the entire text for the last relevant SQL keyword
|
478 |
+
if sql_query_candidate is None:
|
479 |
+
# Find the start index of the *last* common SQL keyword (case-insensitive)
|
480 |
+
last_match = None
|
481 |
+
# Expand search beyond just SELECT for better fallback
|
482 |
+
sql_keywords_search = (
|
483 |
+
r"\b(SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|WITH|DROP|TRUNCATE)\b"
|
484 |
)
|
485 |
+
for match in re.finditer(sql_keywords_search, text, re.IGNORECASE):
|
486 |
+
last_match = match
|
487 |
+
|
488 |
+
if last_match:
|
489 |
+
# Extract from the last keyword to the end of the string
|
490 |
+
sql_query_candidate = text[last_match.start() :].strip()
|
491 |
+
|
492 |
+
# 4. Cleanup: Truncate at first semicolon and strip whitespace
|
493 |
+
if sql_query_candidate:
|
494 |
+
# Find the first semicolon in the candidate string
|
495 |
+
first_semicolon_index = sql_query_candidate.find(";")
|
496 |
+
if first_semicolon_index != -1:
|
497 |
+
# If found, take everything before it
|
498 |
+
sql_query = sql_query_candidate[:first_semicolon_index].strip()
|
499 |
+
else:
|
500 |
+
# If no semicolon, use the candidate as is (after stripping)
|
501 |
+
sql_query = sql_query_candidate.strip()
|
502 |
+
|
503 |
+
# clean the ```sql\n from the start and the \n``` in case it is there
|
504 |
+
sql_query = sql_query.replace("```sql", "").replace("```", "").strip()
|
505 |
+
|
506 |
else:
|
507 |
+
sql_query = None # Ensure sql_query is None if no candidate was found
|
508 |
|
509 |
+
# 5. Return result or 'not found' message
|
510 |
+
return (
|
511 |
+
sql_query if sql_query is not None else "No query found in generation"
|
512 |
+
) # Check for None explicitly
|
513 |
|
514 |
|
515 |
class ScaleNumberToZeroOneReturnZeroIfFails(FieldOperator):
|
version.py
CHANGED
@@ -1 +1 @@
|
|
1 |
-
version = "1.22.
|
|
|
1 |
+
version = "1.22.2"
|