Spaces:
Runtime error
Runtime error
File size: 8,581 Bytes
9d55eb4 a9e7d31 5d26322 a9e7d31 9d55eb4 ff6dd35 9d55eb4 a9e7d31 9d55eb4 ff6dd35 a9e7d31 9d55eb4 a9e7d31 9d55eb4 a9e7d31 9d55eb4 a9e7d31 da700a9 a9e7d31 9d55eb4 ff6dd35 a9e7d31 9d55eb4 9f1411e da700a9 a9e7d31 9d55eb4 a9e7d31 9d55eb4 a9e7d31 9d55eb4 b0042a5 9d55eb4 a9e7d31 9d55eb4 a9e7d31 9d55eb4 a9e7d31 9d55eb4 a9e7d31 ff6dd35 da700a9 30dcff9 ff6dd35 a9e7d31 97f74a7 dadd4bc a9e7d31 5d26322 ff6dd35 5d26322 ff6dd35 a9e7d31 6e3d5eb aeb451a a9e7d31 97f74a7 a9e7d31 30dcff9 b33cc95 aeb451a a9e7d31 6e3d5eb a9e7d31 ff6dd35 a9e7d31 da700a9 a9e7d31 6e3d5eb da700a9 a9e7d31 da700a9 a9e7d31 b0042a5 da700a9 b0042a5 a9e7d31 b0042a5 a9e7d31 b0042a5 a9e7d31 2184a6f 9d55eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import json
import os
import gradio as gr
# import torch
# from transformers import (AutoModelForCausalLM, AutoTokenizer,
# TextIteratorStreamer, set_seed)
from huggingface_hub import Repository
from text_generation import Client
# from threading import Thread
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
if HF_TOKEN:
repo = Repository(
local_dir="data", clone_from="trl-lib/stack-llama-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
)
client = Client(
"https://api-inference.huggingface.co/models/trl-lib/llama-se-rl-merged",
headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model_id = "trl-lib/llama-se-rl-merged"
# print(f"Loading model: {model_id}")
# if device == "cpu":
# model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, use_auth_token=HF_TOKEN)
# else:
# model = AutoModelForCausalLM.from_pretrained(
# model_id, device_map="auto", load_in_8bit=True, use_auth_token=HF_TOKEN
# )
# tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN)
PROMPT_TEMPLATE = """Question: {prompt}\n\nAnswer:"""
def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
with open(os.path.join("data", "prompts.jsonl"), "a") as f:
json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
f.write("\n")
commit_url = repo.push_to_hub()
# def generate(instruction, temperature=0.9, max_new_tokens=128, top_p=0.95, top_k=100):
# set_seed(42)
# formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
# temperature = float(temperature)
# top_p = float(top_p)
# streamer = TextIteratorStreamer(tokenizer)
# model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device)
# generate_kwargs = dict(
# top_p=top_p,
# temperature=temperature,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# top_k=top_k,
# eos_token_id=tokenizer.eos_token_id,
# pad_token_id=tokenizer.eos_token_id,
# )
# t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
# t.start()
# output = ""
# hidden_output = ""
# for new_text in streamer:
# # skip streaming until new text is available
# if len(hidden_output) <= len(formatted_instruction):
# hidden_output += new_text
# continue
# # replace eos token
# # if tokenizer.eos_token in new_text:
# # new_text = new_text.replace(tokenizer.eos_token, "")
# output += new_text
# yield output
# if HF_TOKEN:
# print("Pushing prompt and completion to the Hub")
# save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
# return output
def generate(instruction, temperature=0.9, max_new_tokens=256, top_p=0.95, top_k=100):
# set_seed(42)
formatted_instruction = PROMPT_TEMPLATE.format(prompt=instruction)
temperature = float(temperature)
top_p = float(top_p)
stream = client.generate_stream(
formatted_instruction,
temperature=temperature,
truncate=999,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
# stop_sequences=["</s>"],
)
output = ""
for response in stream:
output += response.token.text
yield output
return output
# streamer = TextIteratorStreamer(tokenizer)
# model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048).to(device)
# generate_kwargs = dict(
# top_p=top_p,
# temperature=temperature,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# top_k=top_k,
# # eos_token_id=tokenizer.eos_token_id,
# # pad_token_id=tokenizer.eos_token_id,
# )
# t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
# t.start()
# output = ""
# hidden_output = ""
# for new_text in streamer:
# # skip streaming until new text is available
# if len(hidden_output) <= len(formatted_instruction):
# hidden_output += new_text
# continue
# # replace eos token
# # if tokenizer.eos_token in new_text:
# # new_text = new_text.replace(tokenizer.eos_token, "")
# output += new_text
# yield output
# if HF_TOKEN:
# print("Pushing prompt and completion to the Hub")
# save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
# return output
examples = [
"A llama is in my lawn. How do I get rid of him?",
"How do I create an array in C++ which contains all even numbers between 1 and 10?",
"How can I sort a list in Python?",
"How can I write a Java function to generate the nth Fibonacci number?",
"How many helicopters can a llama eat in one sitting?",
]
def process_example(args):
for x in generate(args):
pass
return x
with gr.Blocks(theme=theme, analytics_enabled=False, css=".generating {visibility: hidden}") as demo:
with gr.Column():
gr.Markdown(
"""<h1><center>🦙🦙🦙 StackLLaMa 🦙🦙🦙</center></h1>
StackLLaMa is a 7 billion parameter language model that has been trained on pairs of questions and answers from [Stack Exchange](https://stackexchange.com) using Reinforcement Learning from Human Feedback with the [TRL library](https://github.com/lvwerra/trl). For more details, check out our [blog post](https://huggingface.co./blog/stackllama).
Type in the box below and click the button to generate answers to your most pressing questions 🔥!
**Note:** we are collecting your prompts and model completions for research purposes.
"""
)
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(placeholder="Enter your question here", label="Question")
with gr.Box():
gr.Markdown("**Answer**")
output = gr.Markdown()
submit = gr.Button("Generate", variant="primary")
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=True,
fn=process_example,
outputs=[output],
)
with gr.Column(scale=1):
temperature = gr.Slider(
label="Temperature",
value=0.8,
minimum=0.01,
maximum=2.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=128,
minimum=0,
maximum=2048,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
top_k = gr.Slider(
label="Top-k",
value=40,
minimum=0,
maximum=100,
step=2,
interactive=True,
info="Sample from top-k tokens",
)
submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, top_k], outputs=[output])
demo.queue(concurrency_count=1)
demo.launch(enable_queue=True) # , share=True)
|