""" Main FastAPI application integrating all components with Hugging Face Inference Endpoint. """ import gradio as gr import fastapi from fastapi.staticfiles import StaticFiles from fastapi.responses import HTMLResponse, FileResponse, JSONResponse from fastapi import FastAPI, Request, Form, UploadFile, File import os import time import logging import json import shutil import uvicorn from pathlib import Path from typing import Dict, List, Optional, Any import io import numpy as np from scipy.io.wavfile import write # Import our modules from local_llm import run_llm, run_llm_with_memory, clear_memory, get_memory_sessions, get_model_info, test_endpoint # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Create the FastAPI app app = FastAPI(title="AGI Telecom POC") # Create static directory if it doesn't exist static_dir = Path("static") static_dir.mkdir(exist_ok=True) # Copy index.html from templates to static if it doesn't exist html_template = Path("templates/index.html") static_html = static_dir / "index.html" if html_template.exists() and not static_html.exists(): shutil.copy(html_template, static_html) # Mount static files app.mount("/static", StaticFiles(directory="static"), name="static") # Helper functions for mock implementations def mock_transcribe(audio_bytes): """Mock function to simulate speech-to-text.""" logger.info("Transcribing audio...") time.sleep(0.5) # Simulate processing time return "This is a mock transcription of the audio." def mock_synthesize_speech(text): """Mock function to simulate text-to-speech.""" logger.info("Synthesizing speech...") time.sleep(0.5) # Simulate processing time # Create a dummy audio file sample_rate = 22050 duration = 2 # seconds t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False) audio = np.sin(2 * np.pi * 440 * t) * 0.3 output_file = "temp_audio.wav" write(output_file, sample_rate, audio.astype(np.float32)) with open(output_file, "rb") as f: audio_bytes = f.read() return audio_bytes # Routes for the API @app.get("/", response_class=HTMLResponse) async def root(): """Serve the main UI.""" return FileResponse("static/index.html") @app.get("/health") async def health_check(): """Health check endpoint.""" endpoint_status = test_endpoint() return { "status": "ok", "endpoint": endpoint_status } @app.post("/api/transcribe") async def transcribe(file: UploadFile = File(...)): """Transcribe audio to text.""" try: audio_bytes = await file.read() text = mock_transcribe(audio_bytes) return {"transcription": text} except Exception as e: logger.error(f"Transcription error: {str(e)}") return JSONResponse( status_code=500, content={"error": f"Failed to transcribe audio: {str(e)}"} ) @app.post("/api/query") async def query_agent(input_text: str = Form(...), session_id: str = Form("default")): """Process a text query with the agent.""" try: response = run_llm_with_memory(input_text, session_id=session_id) logger.info(f"Query: {input_text[:30]}... Response: {response[:30]}...") return {"response": response} except Exception as e: logger.error(f"Query error: {str(e)}") return JSONResponse( status_code=500, content={"error": f"Failed to process query: {str(e)}"} ) @app.post("/api/speak") async def speak(text: str = Form(...)): """Convert text to speech.""" try: audio_bytes = mock_synthesize_speech(text) return FileResponse( "temp_audio.wav", media_type="audio/wav", filename="response.wav" ) except Exception as e: logger.error(f"Speech synthesis error: {str(e)}") return JSONResponse( status_code=500, content={"error": f"Failed to synthesize speech: {str(e)}"} ) @app.post("/api/session") async def create_session(): """Create a new session.""" import uuid session_id = str(uuid.uuid4()) clear_memory(session_id) return {"session_id": session_id} @app.delete("/api/session/{session_id}") async def delete_session(session_id: str): """Delete a session.""" success = clear_memory(session_id) if success: return {"message": f"Session {session_id} cleared"} else: return JSONResponse( status_code=404, content={"error": f"Session {session_id} not found"} ) @app.get("/api/sessions") async def list_sessions(): """List all active sessions.""" return {"sessions": get_memory_sessions()} @app.get("/api/model_info") async def model_info(): """Get information about the model.""" return get_model_info() @app.post("/api/complete") async def complete_flow( request: Request, audio_file: UploadFile = File(None), text_input: str = Form(None), session_id: str = Form("default") ): """ Complete flow: audio to text to agent to speech. """ try: # If audio file provided, transcribe it if audio_file: audio_bytes = await audio_file.read() text_input = mock_transcribe(audio_bytes) logger.info(f"Transcribed input: {text_input[:30]}...") # Process with agent if not text_input: return JSONResponse( status_code=400, content={"error": "No input provided"} ) response = run_llm_with_memory(text_input, session_id=session_id) logger.info(f"Agent response: {response[:30]}...") # Synthesize speech audio_bytes = mock_synthesize_speech(response) # Save audio to a temporary file import tempfile temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") temp_file.write(audio_bytes) temp_file.close() # Generate URL for audio host = request.headers.get("host", "localhost") scheme = request.headers.get("x-forwarded-proto", "http") audio_url = f"{scheme}://{host}/audio/{os.path.basename(temp_file.name)}" return { "input": text_input, "response": response, "audio_url": audio_url } except Exception as e: logger.error(f"Complete flow error: {str(e)}") return JSONResponse( status_code=500, content={"error": f"Failed to process: {str(e)}"} ) @app.get("/audio/{filename}") async def get_audio(filename: str): """ Serve temporary audio files. """ try: # Ensure filename only contains safe characters import re if not re.match(r'^[a-zA-Z0-9_.-]+$', filename): return JSONResponse( status_code=400, content={"error": "Invalid filename"} ) temp_dir = tempfile.gettempdir() file_path = os.path.join(temp_dir, filename) if not os.path.exists(file_path): return JSONResponse( status_code=404, content={"error": "File not found"} ) return FileResponse( file_path, media_type="audio/wav", filename=filename ) except Exception as e: logger.error(f"Audio serving error: {str(e)}") return JSONResponse( status_code=500, content={"error": f"Failed to serve audio: {str(e)}"} ) # Gradio interface with gr.Blocks(title="AGI Telecom POC", css="footer {visibility: hidden}") as interface: gr.Markdown("# AGI Telecom POC Demo") gr.Markdown("This is a demonstration of the AGI Telecom Proof of Concept using a Hugging Face Inference Endpoint.") with gr.Row(): with gr.Column(): # Input components audio_input = gr.Audio(label="Voice Input", type="filepath") text_input = gr.Textbox(label="Text Input", placeholder="Type your message here...", lines=2) # Session management session_id = gr.Textbox(label="Session ID", value="default") new_session_btn = gr.Button("New Session") # Action buttons with gr.Row(): transcribe_btn = gr.Button("Transcribe Audio") query_btn = gr.Button("Send Query") speak_btn = gr.Button("Speak Response") with gr.Column(): # Output components transcription_output = gr.Textbox(label="Transcription", lines=2) response_output = gr.Textbox(label="Agent Response", lines=5) audio_output = gr.Audio(label="Voice Response", autoplay=True) # Status and info status_output = gr.Textbox(label="Status", value="Ready") endpoint_status = gr.Textbox(label="Endpoint Status", value="Checking endpoint connection...") # Link components with functions def update_session(): import uuid new_id = str(uuid.uuid4()) clear_memory(new_id) status = f"Created new session: {new_id}" return new_id, status new_session_btn.click( update_session, outputs=[session_id, status_output] ) def process_audio(audio_path, session): if not audio_path: return "No audio provided", "", None, "Error: No audio input" try: with open(audio_path, "rb") as f: audio_bytes = f.read() # Transcribe text = mock_transcribe(audio_bytes) # Get response response = run_llm_with_memory(text, session) # Synthesize audio_bytes = mock_synthesize_speech(response) temp_file = "temp_response.wav" with open(temp_file, "wb") as f: f.write(audio_bytes) return text, response, temp_file, "Processed successfully" except Exception as e: logger.error(f"Error: {str(e)}") return "", "", None, f"Error: {str(e)}" transcribe_btn.click( lambda audio_path: mock_transcribe(open(audio_path, "rb").read()) if audio_path else "No audio provided", inputs=[audio_input], outputs=[transcription_output] ) query_btn.click( lambda text, session: run_llm_with_memory(text, session), inputs=[text_input, session_id], outputs=[response_output] ) speak_btn.click( lambda text: "temp_response.wav" if mock_synthesize_speech(text) else None, inputs=[response_output], outputs=[audio_output] ) # Full process audio_input.change( process_audio, inputs=[audio_input, session_id], outputs=[transcription_output, response_output, audio_output, status_output] ) # Check endpoint on load def check_endpoint(): status = test_endpoint() if status["status"] == "connected": return f"✅ Connected to endpoint: {status['message']}" else: return f"❌ Error connecting to endpoint: {status['message']}" gr.on_load(lambda: gr.update(value=check_endpoint()), outputs=endpoint_status) # Mount Gradio app app = gr.mount_gradio_app(app, interface, path="/gradio") # Run the app if __name__ == "__main__": # Check if running on HF Spaces if os.environ.get("SPACE_ID"): # Running on HF Spaces - use their port port = int(os.environ.get("PORT", 7860)) uvicorn.run(app, host="0.0.0.0", port=port) else: # Running locally uvicorn.run(app, host="0.0.0.0", port=8000)