Spaces:
Paused
Paused
Update models/local_llm.py
Browse files- models/local_llm.py +6 -130
models/local_llm.py
CHANGED
@@ -5,7 +5,6 @@ import requests
|
|
5 |
import os
|
6 |
import json
|
7 |
import logging
|
8 |
-
from typing import Dict, List, Optional, Any
|
9 |
|
10 |
# Configure logging
|
11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
@@ -21,17 +20,14 @@ if not HF_API_KEY:
|
|
21 |
if not ENDPOINT_URL:
|
22 |
logger.warning("ENDPOINT_URL environment variable not set")
|
23 |
|
24 |
-
|
25 |
-
conversation_memory: Dict[str, List[Dict[str, str]]] = {}
|
26 |
-
|
27 |
-
def run_llm(input_text: str, max_tokens: int = 512, temperature: float = 0.7) -> str:
|
28 |
"""
|
29 |
Process input text through HF Inference Endpoint.
|
30 |
|
31 |
Args:
|
32 |
-
|
33 |
max_tokens: Maximum tokens to generate
|
34 |
-
temperature: Temperature for sampling
|
35 |
|
36 |
Returns:
|
37 |
Generated response text
|
@@ -44,7 +40,7 @@ def run_llm(input_text: str, max_tokens: int = 512, temperature: float = 0.7) ->
|
|
44 |
# Format messages in OpenAI format
|
45 |
messages = [
|
46 |
{"role": "system", "content": "You are a helpful AI assistant for a telecom service. Answer questions clearly and concisely."},
|
47 |
-
{"role": "user", "content":
|
48 |
]
|
49 |
|
50 |
payload = {
|
@@ -54,7 +50,7 @@ def run_llm(input_text: str, max_tokens: int = 512, temperature: float = 0.7) ->
|
|
54 |
"temperature": temperature
|
55 |
}
|
56 |
|
57 |
-
logger.
|
58 |
|
59 |
try:
|
60 |
response = requests.post(ENDPOINT_URL, headers=headers, json=payload)
|
@@ -62,7 +58,6 @@ def run_llm(input_text: str, max_tokens: int = 512, temperature: float = 0.7) ->
|
|
62 |
|
63 |
result = response.json()
|
64 |
response_text = result["choices"][0]["message"]["content"]
|
65 |
-
logger.debug(f"Generated response of {len(response_text)} characters")
|
66 |
return response_text
|
67 |
|
68 |
except requests.exceptions.RequestException as e:
|
@@ -70,123 +65,4 @@ def run_llm(input_text: str, max_tokens: int = 512, temperature: float = 0.7) ->
|
|
70 |
if hasattr(e, 'response') and e.response is not None:
|
71 |
error_msg += f" - Status code: {e.response.status_code}, Response: {e.response.text}"
|
72 |
logger.error(error_msg)
|
73 |
-
return f"Error generating response: {str(e)}"
|
74 |
-
|
75 |
-
def run_llm_with_memory(input_text: str, session_id: str = "default", max_tokens: int = 512, temperature: float = 0.7) -> str:
|
76 |
-
"""
|
77 |
-
Process input with conversation memory.
|
78 |
-
|
79 |
-
Args:
|
80 |
-
input_text: User input to process
|
81 |
-
session_id: Unique identifier for conversation
|
82 |
-
max_tokens: Maximum tokens to generate
|
83 |
-
temperature: Temperature for sampling
|
84 |
-
|
85 |
-
Returns:
|
86 |
-
Generated response text
|
87 |
-
"""
|
88 |
-
# Initialize memory if needed
|
89 |
-
if session_id not in conversation_memory:
|
90 |
-
conversation_memory[session_id] = [
|
91 |
-
{"role": "system", "content": "You are a helpful AI assistant for a telecom service. Answer questions clearly and concisely."}
|
92 |
-
]
|
93 |
-
|
94 |
-
# Add current input to memory
|
95 |
-
conversation_memory[session_id].append({"role": "user", "content": input_text})
|
96 |
-
|
97 |
-
# Prepare the full conversation history
|
98 |
-
messages = conversation_memory[session_id].copy()
|
99 |
-
|
100 |
-
# Keep only the last 10 messages to avoid context length issues
|
101 |
-
if len(messages) > 10:
|
102 |
-
# Always keep the system message
|
103 |
-
messages = [messages[0]] + messages[-9:]
|
104 |
-
|
105 |
-
headers = {
|
106 |
-
"Authorization": f"Bearer {HF_API_KEY}",
|
107 |
-
"Content-Type": "application/json"
|
108 |
-
}
|
109 |
-
|
110 |
-
payload = {
|
111 |
-
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
112 |
-
"messages": messages,
|
113 |
-
"max_tokens": max_tokens,
|
114 |
-
"temperature": temperature
|
115 |
-
}
|
116 |
-
|
117 |
-
logger.debug(f"Sending memory-based request for session {session_id}")
|
118 |
-
|
119 |
-
try:
|
120 |
-
response = requests.post(ENDPOINT_URL, headers=headers, json=payload)
|
121 |
-
response.raise_for_status()
|
122 |
-
|
123 |
-
result = response.json()
|
124 |
-
response_text = result["choices"][0]["message"]["content"]
|
125 |
-
|
126 |
-
# Save response to memory
|
127 |
-
conversation_memory[session_id].append({"role": "assistant", "content": response_text})
|
128 |
-
|
129 |
-
return response_text
|
130 |
-
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
error_msg = f"Error calling endpoint: {str(e)}"
|
133 |
-
if hasattr(e, 'response') and e.response is not None:
|
134 |
-
error_msg += f" - Status code: {e.response.status_code}, Response: {e.response.text}"
|
135 |
-
logger.error(error_msg)
|
136 |
-
return f"Error generating response: {str(e)}"
|
137 |
-
|
138 |
-
def clear_memory(session_id: str = "default") -> bool:
|
139 |
-
"""
|
140 |
-
Clear conversation memory for a specific session.
|
141 |
-
|
142 |
-
Args:
|
143 |
-
session_id: Unique identifier for conversation
|
144 |
-
"""
|
145 |
-
if session_id in conversation_memory:
|
146 |
-
conversation_memory[session_id] = [
|
147 |
-
{"role": "system", "content": "You are a helpful AI assistant for a telecom service. Answer questions clearly and concisely."}
|
148 |
-
]
|
149 |
-
return True
|
150 |
-
return False
|
151 |
-
|
152 |
-
def get_memory_sessions() -> List[str]:
|
153 |
-
"""
|
154 |
-
Get list of active memory sessions.
|
155 |
-
|
156 |
-
Returns:
|
157 |
-
List of session IDs
|
158 |
-
"""
|
159 |
-
return list(conversation_memory.keys())
|
160 |
-
|
161 |
-
def get_model_info() -> Dict[str, Any]:
|
162 |
-
"""
|
163 |
-
Get information about the connected model endpoint.
|
164 |
-
|
165 |
-
Returns:
|
166 |
-
Dictionary with endpoint information
|
167 |
-
"""
|
168 |
-
return {
|
169 |
-
"endpoint_url": ENDPOINT_URL,
|
170 |
-
"memory_sessions": len(conversation_memory),
|
171 |
-
"model_type": "Meta-Llama-3.1-8B-Instruct (Inference Endpoint)"
|
172 |
-
}
|
173 |
-
|
174 |
-
def test_endpoint() -> Dict[str, Any]:
|
175 |
-
"""
|
176 |
-
Test the endpoint connection.
|
177 |
-
|
178 |
-
Returns:
|
179 |
-
Status information
|
180 |
-
"""
|
181 |
-
try:
|
182 |
-
response = run_llm("Hello, this is a test message. Please respond with a short greeting.")
|
183 |
-
return {
|
184 |
-
"status": "connected",
|
185 |
-
"message": "Successfully connected to endpoint",
|
186 |
-
"sample_response": response[:50] + "..." if len(response) > 50 else response
|
187 |
-
}
|
188 |
-
except Exception as e:
|
189 |
-
return {
|
190 |
-
"status": "error",
|
191 |
-
"message": f"Failed to connect to endpoint: {str(e)}"
|
192 |
-
}
|
|
|
5 |
import os
|
6 |
import json
|
7 |
import logging
|
|
|
8 |
|
9 |
# Configure logging
|
10 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
|
|
20 |
if not ENDPOINT_URL:
|
21 |
logger.warning("ENDPOINT_URL environment variable not set")
|
22 |
|
23 |
+
def run_llm(prompt, max_tokens=512, temperature=0.7):
|
|
|
|
|
|
|
24 |
"""
|
25 |
Process input text through HF Inference Endpoint.
|
26 |
|
27 |
Args:
|
28 |
+
prompt: Input prompt to process
|
29 |
max_tokens: Maximum tokens to generate
|
30 |
+
temperature: Temperature for sampling
|
31 |
|
32 |
Returns:
|
33 |
Generated response text
|
|
|
40 |
# Format messages in OpenAI format
|
41 |
messages = [
|
42 |
{"role": "system", "content": "You are a helpful AI assistant for a telecom service. Answer questions clearly and concisely."},
|
43 |
+
{"role": "user", "content": prompt}
|
44 |
]
|
45 |
|
46 |
payload = {
|
|
|
50 |
"temperature": temperature
|
51 |
}
|
52 |
|
53 |
+
logger.info(f"Sending request to endpoint: {ENDPOINT_URL[:30]}...")
|
54 |
|
55 |
try:
|
56 |
response = requests.post(ENDPOINT_URL, headers=headers, json=payload)
|
|
|
58 |
|
59 |
result = response.json()
|
60 |
response_text = result["choices"][0]["message"]["content"]
|
|
|
61 |
return response_text
|
62 |
|
63 |
except requests.exceptions.RequestException as e:
|
|
|
65 |
if hasattr(e, 'response') and e.response is not None:
|
66 |
error_msg += f" - Status code: {e.response.status_code}, Response: {e.response.text}"
|
67 |
logger.error(error_msg)
|
68 |
+
return f"Error generating response: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|