|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
|
|
class DiagonalGaussianDistribution(object): |
|
def __init__(self, parameters: torch.Tensor, deterministic: bool = False): |
|
self.parameters = parameters |
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) |
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) |
|
self.deterministic = deterministic |
|
self.std = torch.exp(0.5 * self.logvar) |
|
self.var = torch.exp(self.logvar) |
|
if self.deterministic: |
|
self.var = self.std = torch.zeros_like( |
|
self.mean, device=self.parameters.device, dtype=self.parameters.dtype |
|
) |
|
|
|
def sample(self, generator=None) -> torch.Tensor: |
|
|
|
sample = torch.randn( |
|
self.mean.shape, |
|
generator=generator, |
|
device=self.parameters.device, |
|
dtype=self.parameters.dtype, |
|
) |
|
x = self.mean + self.std * sample |
|
return x |
|
|
|
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor: |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
else: |
|
if other is None: |
|
return 0.5 * torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar |
|
else: |
|
return 0.5 * ( |
|
torch.pow(self.mean - other.mean, 2) / other.var |
|
+ self.var / other.var |
|
- 1.0 |
|
- self.logvar |
|
+ other.logvar |
|
) |
|
|
|
def nll(self, sample, dims) -> torch.Tensor: |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
logtwopi = np.log(2.0 * np.pi) |
|
return 0.5 * torch.sum( |
|
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, |
|
dim=dims, |
|
) |
|
|
|
def mode(self) -> torch.Tensor: |
|
return self.mean |