File size: 2,287 Bytes
593f3bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from torch import nn
import torch.nn.functional as F
from tts.modules.wavvae.decoder.seanet_encoder import Encoder
from tts.modules.wavvae.decoder.diag_gaussian import DiagonalGaussianDistribution
from tts.modules.wavvae.decoder.hifigan_modules import Generator, Upsample
class WavVAE_V3(nn.Module):
def __init__(self, hparams=None):
super().__init__()
self.encoder = Encoder(dowmsamples=[6, 5, 4, 4, 2])
self.proj_to_z = nn.Linear(512, 64)
self.proj_to_decoder = nn.Linear(32, 320)
config_path = hparams['melgan_config']
args = argparse.Namespace()
args.__dict__.update(config_path)
self.latent_upsampler = Upsample(320, 4)
self.decoder = Generator(
input_size_=160, ngf=128, n_residual_layers=4,
num_band=1, args=args, ratios=[5,4,4,3])
''' encode waveform into 25 hz latent representation '''
def encode_latent(self, audio):
posterior = self.encode(audio)
latent = posterior.sample().permute(0, 2, 1) # (b,t,latent_channel)
return latent
def encode(self, audio):
x = self.encoder(audio).permute(0, 2, 1)
x = self.proj_to_z(x).permute(0, 2, 1)
poseterior = DiagonalGaussianDistribution(x)
return poseterior
def decode(self, latent):
latent = self.proj_to_decoder(latent).permute(0, 2, 1)
return self.decoder(self.latent_upsampler(latent))
def forward(self, audio):
posterior = self.encode(audio)
latent = posterior.sample().permute(0, 2, 1) # (b, t, latent_channel)
recon_wav = self.decode(latent)
return recon_wav, posterior |