thugCodeNinja commited on
Commit
9ec41ea
·
verified ·
1 Parent(s): cb0fc84

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import torch
3
  from torch.nn.functional import softmax
 
4
  import requests
5
  from bs4 import BeautifulSoup
6
  from sklearn.metrics.pairwise import cosine_similarity
@@ -11,9 +12,9 @@ tokenizer = RobertaTokenizer.from_pretrained(model_dir)
11
  model = RobertaForSequenceClassification.from_pretrained(model_dir)
12
  tokenizer1 = RobertaTokenizer.from_pretrained('roberta-base')
13
  model1 = RobertaModel.from_pretrained('roberta-base')
 
14
  #pipe = pipeline("text-classification", model="thugCodeNinja/robertatemp")
15
- pipe = pipeline("text-classification",model=model,tokenizer=tokenizer)
16
- threshold = 0.5
17
  def process_text(input_text):
18
  if input_text:
19
  text = input_text
@@ -72,11 +73,11 @@ def process_text(input_text):
72
  if similarity > threshold:
73
  similar_articles.append([link,similarity])
74
  similar_articles = sorted(similar_articles, key=lambda x: x[1], reverse=True)
75
- # Adjust the threshold as needed
76
  return similar_articles[:5]
77
 
78
  # prediction = pipe([text])
79
- # explainer = shap.Explainer(pipe)
80
  # shap_values = explainer([text])
81
  # shap_plot_html = HTML(shap.plots.text(shap_values, display=False)).data
82
  similar_articles = find_plagiarism(text)
 
1
  import gradio as gr
2
  import torch
3
  from torch.nn.functional import softmax
4
+ import shap
5
  import requests
6
  from bs4 import BeautifulSoup
7
  from sklearn.metrics.pairwise import cosine_similarity
 
12
  model = RobertaForSequenceClassification.from_pretrained(model_dir)
13
  tokenizer1 = RobertaTokenizer.from_pretrained('roberta-base')
14
  model1 = RobertaModel.from_pretrained('roberta-base')
15
+ threshold=0.5
16
  #pipe = pipeline("text-classification", model="thugCodeNinja/robertatemp")
17
+ # pipe = pipeline("text-classification",model=model,tokenizer=tokenizer)
 
18
  def process_text(input_text):
19
  if input_text:
20
  text = input_text
 
73
  if similarity > threshold:
74
  similar_articles.append([link,similarity])
75
  similar_articles = sorted(similar_articles, key=lambda x: x[1], reverse=True)
76
+ #threshold = 0.5 # Adjust the threshold as needed
77
  return similar_articles[:5]
78
 
79
  # prediction = pipe([text])
80
+ # explainer = shap.DeepExplainer(model,[text])
81
  # shap_values = explainer([text])
82
  # shap_plot_html = HTML(shap.plots.text(shap_values, display=False)).data
83
  similar_articles = find_plagiarism(text)