Spaces:
Runtime error
Runtime error
File size: 14,451 Bytes
2fa4776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
from dataclasses import dataclass, field
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import threestudio
from threestudio.models.geometry.base import (
BaseExplicitGeometry,
BaseGeometry,
contract_to_unisphere,
)
from threestudio.models.geometry.implicit_sdf import ImplicitSDF
from threestudio.models.geometry.implicit_volume import ImplicitVolume
from threestudio.models.isosurface import MarchingTetrahedraHelper
from threestudio.models.mesh import Mesh
from threestudio.models.networks import get_encoding, get_mlp
from threestudio.utils.misc import broadcast
from threestudio.utils.ops import scale_tensor
from threestudio.utils.typing import *
@threestudio.register("tetrahedra-sdf-grid")
class TetrahedraSDFGrid(BaseExplicitGeometry):
@dataclass
class Config(BaseExplicitGeometry.Config):
isosurface_resolution: int = 128
isosurface_deformable_grid: bool = True
isosurface_remove_outliers: bool = False
isosurface_outlier_n_faces_threshold: Union[int, float] = 0.01
n_input_dims: int = 3
n_feature_dims: int = 3
pos_encoding_config: dict = field(
default_factory=lambda: {
"otype": "HashGrid",
"n_levels": 16,
"n_features_per_level": 2,
"log2_hashmap_size": 19,
"base_resolution": 16,
"per_level_scale": 1.447269237440378,
}
)
mlp_network_config: dict = field(
default_factory=lambda: {
"otype": "VanillaMLP",
"activation": "ReLU",
"output_activation": "none",
"n_neurons": 64,
"n_hidden_layers": 1,
}
)
shape_init: Optional[str] = None
shape_init_params: Optional[Any] = None
shape_init_mesh_up: str = "+z"
shape_init_mesh_front: str = "+x"
force_shape_init: bool = False
geometry_only: bool = False
fix_geometry: bool = False
cfg: Config
def configure(self) -> None:
super().configure()
# this should be saved to state_dict, register as buffer
self.isosurface_bbox: Float[Tensor, "2 3"]
self.register_buffer("isosurface_bbox", self.bbox.clone())
self.isosurface_helper = MarchingTetrahedraHelper(
self.cfg.isosurface_resolution,
f"load/tets/{self.cfg.isosurface_resolution}_tets.npz",
)
self.sdf: Float[Tensor, "Nv 1"]
self.deformation: Optional[Float[Tensor, "Nv 3"]]
if not self.cfg.fix_geometry:
self.register_parameter(
"sdf",
nn.Parameter(
torch.zeros(
(self.isosurface_helper.grid_vertices.shape[0], 1),
dtype=torch.float32,
)
),
)
if self.cfg.isosurface_deformable_grid:
self.register_parameter(
"deformation",
nn.Parameter(
torch.zeros_like(self.isosurface_helper.grid_vertices)
),
)
else:
self.deformation = None
else:
self.register_buffer(
"sdf",
torch.zeros(
(self.isosurface_helper.grid_vertices.shape[0], 1),
dtype=torch.float32,
),
)
if self.cfg.isosurface_deformable_grid:
self.register_buffer(
"deformation",
torch.zeros_like(self.isosurface_helper.grid_vertices),
)
else:
self.deformation = None
if not self.cfg.geometry_only:
self.encoding = get_encoding(
self.cfg.n_input_dims, self.cfg.pos_encoding_config
)
self.feature_network = get_mlp(
self.encoding.n_output_dims,
self.cfg.n_feature_dims,
self.cfg.mlp_network_config,
)
self.mesh: Optional[Mesh] = None
def initialize_shape(self) -> None:
if self.cfg.shape_init is None and not self.cfg.force_shape_init:
return
# do not initialize shape if weights are provided
if self.cfg.weights is not None and not self.cfg.force_shape_init:
return
get_gt_sdf: Callable[[Float[Tensor, "N 3"]], Float[Tensor, "N 1"]]
assert isinstance(self.cfg.shape_init, str)
if self.cfg.shape_init == "ellipsoid":
assert (
isinstance(self.cfg.shape_init_params, Sized)
and len(self.cfg.shape_init_params) == 3
)
size = torch.as_tensor(self.cfg.shape_init_params).to(self.device)
def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]:
return ((points_rand / size) ** 2).sum(
dim=-1, keepdim=True
).sqrt() - 1.0 # pseudo signed distance of an ellipsoid
get_gt_sdf = func
elif self.cfg.shape_init == "sphere":
assert isinstance(self.cfg.shape_init_params, float)
radius = self.cfg.shape_init_params
def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]:
return (points_rand**2).sum(dim=-1, keepdim=True).sqrt() - radius
get_gt_sdf = func
elif self.cfg.shape_init.startswith("mesh:"):
assert isinstance(self.cfg.shape_init_params, float)
mesh_path = self.cfg.shape_init[5:]
if not os.path.exists(mesh_path):
raise ValueError(f"Mesh file {mesh_path} does not exist.")
import trimesh
mesh = trimesh.load(mesh_path)
# move to center
centroid = mesh.vertices.mean(0)
mesh.vertices = mesh.vertices - centroid
# align to up-z and front-x
dirs = ["+x", "+y", "+z", "-x", "-y", "-z"]
dir2vec = {
"+x": np.array([1, 0, 0]),
"+y": np.array([0, 1, 0]),
"+z": np.array([0, 0, 1]),
"-x": np.array([-1, 0, 0]),
"-y": np.array([0, -1, 0]),
"-z": np.array([0, 0, -1]),
}
if (
self.cfg.shape_init_mesh_up not in dirs
or self.cfg.shape_init_mesh_front not in dirs
):
raise ValueError(
f"shape_init_mesh_up and shape_init_mesh_front must be one of {dirs}."
)
if self.cfg.shape_init_mesh_up[1] == self.cfg.shape_init_mesh_front[1]:
raise ValueError(
"shape_init_mesh_up and shape_init_mesh_front must be orthogonal."
)
z_, x_ = (
dir2vec[self.cfg.shape_init_mesh_up],
dir2vec[self.cfg.shape_init_mesh_front],
)
y_ = np.cross(z_, x_)
std2mesh = np.stack([x_, y_, z_], axis=0).T
mesh2std = np.linalg.inv(std2mesh)
# scaling
scale = np.abs(mesh.vertices).max()
mesh.vertices = mesh.vertices / scale * self.cfg.shape_init_params
mesh.vertices = np.dot(mesh2std, mesh.vertices.T).T
from pysdf import SDF
sdf = SDF(mesh.vertices, mesh.faces)
def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]:
# add a negative signed here
# as in pysdf the inside of the shape has positive signed distance
return torch.from_numpy(-sdf(points_rand.cpu().numpy())).to(
points_rand
)[..., None]
get_gt_sdf = func
else:
raise ValueError(
f"Unknown shape initialization type: {self.cfg.shape_init}"
)
sdf_gt = get_gt_sdf(
scale_tensor(
self.isosurface_helper.grid_vertices,
self.isosurface_helper.points_range,
self.isosurface_bbox,
)
)
self.sdf.data = sdf_gt
# explicit broadcast to ensure param consistency across ranks
for param in self.parameters():
broadcast(param, src=0)
def isosurface(self) -> Mesh:
# return cached mesh if fix_geometry is True to save computation
if self.cfg.fix_geometry and self.mesh is not None:
return self.mesh
mesh = self.isosurface_helper(self.sdf, self.deformation)
mesh.v_pos = scale_tensor(
mesh.v_pos, self.isosurface_helper.points_range, self.isosurface_bbox
)
if self.cfg.isosurface_remove_outliers:
mesh = mesh.remove_outlier(self.cfg.isosurface_outlier_n_faces_threshold)
self.mesh = mesh
return mesh
def forward(
self, points: Float[Tensor, "*N Di"], output_normal: bool = False
) -> Dict[str, Float[Tensor, "..."]]:
if self.cfg.geometry_only:
return {}
assert (
output_normal == False
), f"Normal output is not supported for {self.__class__.__name__}"
points_unscaled = points # points in the original scale
points = contract_to_unisphere(points, self.bbox) # points normalized to (0, 1)
enc = self.encoding(points.view(-1, self.cfg.n_input_dims))
features = self.feature_network(enc).view(
*points.shape[:-1], self.cfg.n_feature_dims
)
return {"features": features}
@staticmethod
@torch.no_grad()
def create_from(
other: BaseGeometry,
cfg: Optional[Union[dict, DictConfig]] = None,
copy_net: bool = True,
**kwargs,
) -> "TetrahedraSDFGrid":
if isinstance(other, TetrahedraSDFGrid):
instance = TetrahedraSDFGrid(cfg, **kwargs)
assert instance.cfg.isosurface_resolution == other.cfg.isosurface_resolution
instance.isosurface_bbox = other.isosurface_bbox.clone()
instance.sdf.data = other.sdf.data.clone()
if (
instance.cfg.isosurface_deformable_grid
and other.cfg.isosurface_deformable_grid
):
assert (
instance.deformation is not None and other.deformation is not None
)
instance.deformation.data = other.deformation.data.clone()
if (
not instance.cfg.geometry_only
and not other.cfg.geometry_only
and copy_net
):
instance.encoding.load_state_dict(other.encoding.state_dict())
instance.feature_network.load_state_dict(
other.feature_network.state_dict()
)
return instance
elif isinstance(other, ImplicitVolume):
instance = TetrahedraSDFGrid(cfg, **kwargs)
if other.cfg.isosurface_method != "mt":
other.cfg.isosurface_method = "mt"
threestudio.warn(
f"Override isosurface_method of the source geometry to 'mt'"
)
if other.cfg.isosurface_resolution != instance.cfg.isosurface_resolution:
other.cfg.isosurface_resolution = instance.cfg.isosurface_resolution
threestudio.warn(
f"Override isosurface_resolution of the source geometry to {instance.cfg.isosurface_resolution}"
)
mesh = other.isosurface()
instance.isosurface_bbox = mesh.extras["bbox"]
instance.sdf.data = (
mesh.extras["grid_level"].to(instance.sdf.data).clamp(-1, 1)
)
if not instance.cfg.geometry_only and copy_net:
instance.encoding.load_state_dict(other.encoding.state_dict())
instance.feature_network.load_state_dict(
other.feature_network.state_dict()
)
return instance
elif isinstance(other, ImplicitSDF):
instance = TetrahedraSDFGrid(cfg, **kwargs)
if other.cfg.isosurface_method != "mt":
other.cfg.isosurface_method = "mt"
threestudio.warn(
f"Override isosurface_method of the source geometry to 'mt'"
)
if other.cfg.isosurface_resolution != instance.cfg.isosurface_resolution:
other.cfg.isosurface_resolution = instance.cfg.isosurface_resolution
threestudio.warn(
f"Override isosurface_resolution of the source geometry to {instance.cfg.isosurface_resolution}"
)
mesh = other.isosurface()
instance.isosurface_bbox = mesh.extras["bbox"]
instance.sdf.data = mesh.extras["grid_level"].to(instance.sdf.data)
if (
instance.cfg.isosurface_deformable_grid
and other.cfg.isosurface_deformable_grid
):
assert instance.deformation is not None
instance.deformation.data = mesh.extras["grid_deformation"].to(
instance.deformation.data
)
if not instance.cfg.geometry_only and copy_net:
instance.encoding.load_state_dict(other.encoding.state_dict())
instance.feature_network.load_state_dict(
other.feature_network.state_dict()
)
return instance
else:
raise TypeError(
f"Cannot create {TetrahedraSDFGrid.__name__} from {other.__class__.__name__}"
)
def export(self, points: Float[Tensor, "*N Di"], **kwargs) -> Dict[str, Any]:
out: Dict[str, Any] = {}
if self.cfg.geometry_only or self.cfg.n_feature_dims == 0:
return out
points_unscaled = points
points = contract_to_unisphere(points_unscaled, self.bbox)
enc = self.encoding(points.reshape(-1, self.cfg.n_input_dims))
features = self.feature_network(enc).view(
*points.shape[:-1], self.cfg.n_feature_dims
)
out.update(
{
"features": features,
}
)
return out
|