Spaces:
Runtime error
Runtime error
File size: 16,097 Bytes
2fa4776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import json
import math
import os
import random
from dataclasses import dataclass
import cv2
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from scipy.spatial.transform import Rotation as Rot
from scipy.spatial.transform import Slerp
from torch.utils.data import DataLoader, Dataset, IterableDataset
from tqdm import tqdm
import threestudio
from threestudio import register
from threestudio.utils.config import parse_structured
from threestudio.utils.ops import get_mvp_matrix, get_ray_directions, get_rays
from threestudio.utils.typing import *
def convert_pose(C2W):
flip_yz = torch.eye(4)
flip_yz[1, 1] = -1
flip_yz[2, 2] = -1
C2W = torch.matmul(C2W, flip_yz)
return C2W
def convert_proj(K, H, W, near, far):
return [
[2 * K[0, 0] / W, -2 * K[0, 1] / W, (W - 2 * K[0, 2]) / W, 0],
[0, -2 * K[1, 1] / H, (H - 2 * K[1, 2]) / H, 0],
[0, 0, (-far - near) / (far - near), -2 * far * near / (far - near)],
[0, 0, -1, 0],
]
def inter_pose(pose_0, pose_1, ratio):
pose_0 = pose_0.detach().cpu().numpy()
pose_1 = pose_1.detach().cpu().numpy()
pose_0 = np.linalg.inv(pose_0)
pose_1 = np.linalg.inv(pose_1)
rot_0 = pose_0[:3, :3]
rot_1 = pose_1[:3, :3]
rots = Rot.from_matrix(np.stack([rot_0, rot_1]))
key_times = [0, 1]
slerp = Slerp(key_times, rots)
rot = slerp(ratio)
pose = np.diag([1.0, 1.0, 1.0, 1.0])
pose = pose.astype(np.float32)
pose[:3, :3] = rot.as_matrix()
pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3]
pose = np.linalg.inv(pose)
return pose
@dataclass
class MultiviewsDataModuleConfig:
dataroot: str = ""
train_downsample_resolution: int = 4
eval_downsample_resolution: int = 4
train_data_interval: int = 1
eval_data_interval: int = 1
batch_size: int = 1
eval_batch_size: int = 1
camera_layout: str = "around"
camera_distance: float = -1
eval_interpolation: Optional[Tuple[int, int, int]] = None # (0, 1, 30)
class MultiviewIterableDataset(IterableDataset):
def __init__(self, cfg: Any) -> None:
super().__init__()
self.cfg: MultiviewsDataModuleConfig = cfg
assert self.cfg.batch_size == 1
scale = self.cfg.train_downsample_resolution
camera_dict = json.load(
open(os.path.join(self.cfg.dataroot, "transforms.json"), "r")
)
assert camera_dict["camera_model"] == "OPENCV"
frames = camera_dict["frames"]
frames = frames[:: self.cfg.train_data_interval]
frames_proj = []
frames_c2w = []
frames_position = []
frames_direction = []
frames_img = []
self.frame_w = frames[0]["w"] // scale
self.frame_h = frames[0]["h"] // scale
threestudio.info("Loading frames...")
self.n_frames = len(frames)
c2w_list = []
for frame in tqdm(frames):
extrinsic: Float[Tensor, "4 4"] = torch.as_tensor(
frame["transform_matrix"], dtype=torch.float32
)
c2w = extrinsic
c2w_list.append(c2w)
c2w_list = torch.stack(c2w_list, dim=0)
if self.cfg.camera_layout == "around":
c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0)
elif self.cfg.camera_layout == "front":
assert self.cfg.camera_distance > 0
c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0)
z_vector = torch.zeros(c2w_list.shape[0], 3, 1)
z_vector[:, 2, :] = -1
rot_z_vector = c2w_list[:, :3, :3] @ z_vector
rot_z_vector = torch.mean(rot_z_vector, dim=0).unsqueeze(0)
c2w_list[:, :3, 3] -= rot_z_vector[:, :, 0] * self.cfg.camera_distance
else:
raise ValueError(
f"Unknown camera layout {self.cfg.camera_layout}. Now support only around and front."
)
for idx, frame in tqdm(enumerate(frames)):
intrinsic: Float[Tensor, "4 4"] = torch.eye(4)
intrinsic[0, 0] = frame["fl_x"] / scale
intrinsic[1, 1] = frame["fl_y"] / scale
intrinsic[0, 2] = frame["cx"] / scale
intrinsic[1, 2] = frame["cy"] / scale
frame_path = os.path.join(self.cfg.dataroot, frame["file_path"])
img = cv2.imread(frame_path)[:, :, ::-1].copy()
img = cv2.resize(img, (self.frame_w, self.frame_h))
img: Float[Tensor, "H W 3"] = torch.FloatTensor(img) / 255
frames_img.append(img)
direction: Float[Tensor, "H W 3"] = get_ray_directions(
self.frame_h,
self.frame_w,
(intrinsic[0, 0], intrinsic[1, 1]),
(intrinsic[0, 2], intrinsic[1, 2]),
use_pixel_centers=False,
)
c2w = c2w_list[idx]
camera_position: Float[Tensor, "3"] = c2w[:3, 3:].reshape(-1)
near = 0.1
far = 1000.0
proj = convert_proj(intrinsic, self.frame_h, self.frame_w, near, far)
proj: Float[Tensor, "4 4"] = torch.FloatTensor(proj)
frames_proj.append(proj)
frames_c2w.append(c2w)
frames_position.append(camera_position)
frames_direction.append(direction)
threestudio.info("Loaded frames.")
self.frames_proj: Float[Tensor, "B 4 4"] = torch.stack(frames_proj, dim=0)
self.frames_c2w: Float[Tensor, "B 4 4"] = torch.stack(frames_c2w, dim=0)
self.frames_position: Float[Tensor, "B 3"] = torch.stack(frames_position, dim=0)
self.frames_direction: Float[Tensor, "B H W 3"] = torch.stack(
frames_direction, dim=0
)
self.frames_img: Float[Tensor, "B H W 3"] = torch.stack(frames_img, dim=0)
self.rays_o, self.rays_d = get_rays(
self.frames_direction, self.frames_c2w, keepdim=True
)
self.mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix(
self.frames_c2w, self.frames_proj
)
self.light_positions: Float[Tensor, "B 3"] = torch.zeros_like(
self.frames_position
)
def __iter__(self):
while True:
yield {}
def collate(self, batch):
index = torch.randint(0, self.n_frames, (1,)).item()
return {
"index": index,
"rays_o": self.rays_o[index : index + 1],
"rays_d": self.rays_d[index : index + 1],
"mvp_mtx": self.mvp_mtx[index : index + 1],
"c2w": self.frames_c2w[index : index + 1],
"camera_positions": self.frames_position[index : index + 1],
"light_positions": self.light_positions[index : index + 1],
"gt_rgb": self.frames_img[index : index + 1],
"height": self.frame_h,
"width": self.frame_w,
}
class MultiviewDataset(Dataset):
def __init__(self, cfg: Any, split: str) -> None:
super().__init__()
self.cfg: MultiviewsDataModuleConfig = cfg
assert self.cfg.eval_batch_size == 1
scale = self.cfg.eval_downsample_resolution
camera_dict = json.load(
open(os.path.join(self.cfg.dataroot, "transforms.json"), "r")
)
assert camera_dict["camera_model"] == "OPENCV"
frames = camera_dict["frames"]
frames = frames[:: self.cfg.eval_data_interval]
frames_proj = []
frames_c2w = []
frames_position = []
frames_direction = []
frames_img = []
self.frame_w = frames[0]["w"] // scale
self.frame_h = frames[0]["h"] // scale
threestudio.info("Loading frames...")
self.n_frames = len(frames)
c2w_list = []
for frame in tqdm(frames):
extrinsic: Float[Tensor, "4 4"] = torch.as_tensor(
frame["transform_matrix"], dtype=torch.float32
)
c2w = extrinsic
c2w_list.append(c2w)
c2w_list = torch.stack(c2w_list, dim=0)
if self.cfg.camera_layout == "around":
c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0)
elif self.cfg.camera_layout == "front":
assert self.cfg.camera_distance > 0
c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0)
z_vector = torch.zeros(c2w_list.shape[0], 3, 1)
z_vector[:, 2, :] = -1
rot_z_vector = c2w_list[:, :3, :3] @ z_vector
rot_z_vector = torch.mean(rot_z_vector, dim=0).unsqueeze(0)
c2w_list[:, :3, 3] -= rot_z_vector[:, :, 0] * self.cfg.camera_distance
else:
raise ValueError(
f"Unknown camera layout {self.cfg.camera_layout}. Now support only around and front."
)
if not (self.cfg.eval_interpolation is None):
idx0 = self.cfg.eval_interpolation[0]
idx1 = self.cfg.eval_interpolation[1]
eval_nums = self.cfg.eval_interpolation[2]
frame = frames[idx0]
intrinsic: Float[Tensor, "4 4"] = torch.eye(4)
intrinsic[0, 0] = frame["fl_x"] / scale
intrinsic[1, 1] = frame["fl_y"] / scale
intrinsic[0, 2] = frame["cx"] / scale
intrinsic[1, 2] = frame["cy"] / scale
for ratio in np.linspace(0, 1, eval_nums):
img: Float[Tensor, "H W 3"] = torch.zeros(
(self.frame_h, self.frame_w, 3)
)
frames_img.append(img)
direction: Float[Tensor, "H W 3"] = get_ray_directions(
self.frame_h,
self.frame_w,
(intrinsic[0, 0], intrinsic[1, 1]),
(intrinsic[0, 2], intrinsic[1, 2]),
use_pixel_centers=False,
)
c2w = torch.FloatTensor(
inter_pose(c2w_list[idx0], c2w_list[idx1], ratio)
)
camera_position: Float[Tensor, "3"] = c2w[:3, 3:].reshape(-1)
near = 0.1
far = 1000.0
proj = convert_proj(intrinsic, self.frame_h, self.frame_w, near, far)
proj: Float[Tensor, "4 4"] = torch.FloatTensor(proj)
frames_proj.append(proj)
frames_c2w.append(c2w)
frames_position.append(camera_position)
frames_direction.append(direction)
else:
for idx, frame in tqdm(enumerate(frames)):
intrinsic: Float[Tensor, "4 4"] = torch.eye(4)
intrinsic[0, 0] = frame["fl_x"] / scale
intrinsic[1, 1] = frame["fl_y"] / scale
intrinsic[0, 2] = frame["cx"] / scale
intrinsic[1, 2] = frame["cy"] / scale
frame_path = os.path.join(self.cfg.dataroot, frame["file_path"])
img = cv2.imread(frame_path)[:, :, ::-1].copy()
img = cv2.resize(img, (self.frame_w, self.frame_h))
img: Float[Tensor, "H W 3"] = torch.FloatTensor(img) / 255
frames_img.append(img)
direction: Float[Tensor, "H W 3"] = get_ray_directions(
self.frame_h,
self.frame_w,
(intrinsic[0, 0], intrinsic[1, 1]),
(intrinsic[0, 2], intrinsic[1, 2]),
use_pixel_centers=False,
)
c2w = c2w_list[idx]
camera_position: Float[Tensor, "3"] = c2w[:3, 3:].reshape(-1)
near = 0.1
far = 1000.0
K = intrinsic
proj = [
[
2 * K[0, 0] / self.frame_w,
-2 * K[0, 1] / self.frame_w,
(self.frame_w - 2 * K[0, 2]) / self.frame_w,
0,
],
[
0,
-2 * K[1, 1] / self.frame_h,
(self.frame_h - 2 * K[1, 2]) / self.frame_h,
0,
],
[
0,
0,
(-far - near) / (far - near),
-2 * far * near / (far - near),
],
[0, 0, -1, 0],
]
proj: Float[Tensor, "4 4"] = torch.FloatTensor(proj)
frames_proj.append(proj)
frames_c2w.append(c2w)
frames_position.append(camera_position)
frames_direction.append(direction)
threestudio.info("Loaded frames.")
self.frames_proj: Float[Tensor, "B 4 4"] = torch.stack(frames_proj, dim=0)
self.frames_c2w: Float[Tensor, "B 4 4"] = torch.stack(frames_c2w, dim=0)
self.frames_position: Float[Tensor, "B 3"] = torch.stack(frames_position, dim=0)
self.frames_direction: Float[Tensor, "B H W 3"] = torch.stack(
frames_direction, dim=0
)
self.frames_img: Float[Tensor, "B H W 3"] = torch.stack(frames_img, dim=0)
self.rays_o, self.rays_d = get_rays(
self.frames_direction, self.frames_c2w, keepdim=True
)
self.mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix(
self.frames_c2w, self.frames_proj
)
self.light_positions: Float[Tensor, "B 3"] = torch.zeros_like(
self.frames_position
)
def __len__(self):
return self.frames_proj.shape[0]
def __getitem__(self, index):
return {
"index": index,
"rays_o": self.rays_o[index],
"rays_d": self.rays_d[index],
"mvp_mtx": self.mvp_mtx[index],
"c2w": self.frames_c2w[index],
"camera_positions": self.frames_position[index],
"light_positions": self.light_positions[index],
"gt_rgb": self.frames_img[index],
}
def __iter__(self):
while True:
yield {}
def collate(self, batch):
batch = torch.utils.data.default_collate(batch)
batch.update({"height": self.frame_h, "width": self.frame_w})
return batch
@register("multiview-camera-datamodule")
class MultiviewDataModule(pl.LightningDataModule):
cfg: MultiviewsDataModuleConfig
def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
super().__init__()
self.cfg = parse_structured(MultiviewsDataModuleConfig, cfg)
def setup(self, stage=None) -> None:
if stage in [None, "fit"]:
self.train_dataset = MultiviewIterableDataset(self.cfg)
if stage in [None, "fit", "validate"]:
self.val_dataset = MultiviewDataset(self.cfg, "val")
if stage in [None, "test", "predict"]:
self.test_dataset = MultiviewDataset(self.cfg, "test")
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader:
return DataLoader(
dataset,
num_workers=1, # type: ignore
batch_size=batch_size,
collate_fn=collate_fn,
)
def train_dataloader(self) -> DataLoader:
return self.general_loader(
self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate
)
def val_dataloader(self) -> DataLoader:
return self.general_loader(
self.val_dataset, batch_size=1, collate_fn=self.val_dataset.collate
)
# return self.general_loader(self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate)
def test_dataloader(self) -> DataLoader:
return self.general_loader(
self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate
)
def predict_dataloader(self) -> DataLoader:
return self.general_loader(
self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate
)
|