File size: 16,097 Bytes
2fa4776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import json
import math
import os
import random
from dataclasses import dataclass

import cv2
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from scipy.spatial.transform import Rotation as Rot
from scipy.spatial.transform import Slerp
from torch.utils.data import DataLoader, Dataset, IterableDataset
from tqdm import tqdm

import threestudio
from threestudio import register
from threestudio.utils.config import parse_structured
from threestudio.utils.ops import get_mvp_matrix, get_ray_directions, get_rays
from threestudio.utils.typing import *


def convert_pose(C2W):
    flip_yz = torch.eye(4)
    flip_yz[1, 1] = -1
    flip_yz[2, 2] = -1
    C2W = torch.matmul(C2W, flip_yz)
    return C2W


def convert_proj(K, H, W, near, far):
    return [
        [2 * K[0, 0] / W, -2 * K[0, 1] / W, (W - 2 * K[0, 2]) / W, 0],
        [0, -2 * K[1, 1] / H, (H - 2 * K[1, 2]) / H, 0],
        [0, 0, (-far - near) / (far - near), -2 * far * near / (far - near)],
        [0, 0, -1, 0],
    ]


def inter_pose(pose_0, pose_1, ratio):
    pose_0 = pose_0.detach().cpu().numpy()
    pose_1 = pose_1.detach().cpu().numpy()
    pose_0 = np.linalg.inv(pose_0)
    pose_1 = np.linalg.inv(pose_1)
    rot_0 = pose_0[:3, :3]
    rot_1 = pose_1[:3, :3]
    rots = Rot.from_matrix(np.stack([rot_0, rot_1]))
    key_times = [0, 1]
    slerp = Slerp(key_times, rots)
    rot = slerp(ratio)
    pose = np.diag([1.0, 1.0, 1.0, 1.0])
    pose = pose.astype(np.float32)
    pose[:3, :3] = rot.as_matrix()
    pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3]
    pose = np.linalg.inv(pose)
    return pose


@dataclass
class MultiviewsDataModuleConfig:
    dataroot: str = ""
    train_downsample_resolution: int = 4
    eval_downsample_resolution: int = 4
    train_data_interval: int = 1
    eval_data_interval: int = 1
    batch_size: int = 1
    eval_batch_size: int = 1
    camera_layout: str = "around"
    camera_distance: float = -1
    eval_interpolation: Optional[Tuple[int, int, int]] = None  # (0, 1, 30)


class MultiviewIterableDataset(IterableDataset):
    def __init__(self, cfg: Any) -> None:
        super().__init__()
        self.cfg: MultiviewsDataModuleConfig = cfg

        assert self.cfg.batch_size == 1
        scale = self.cfg.train_downsample_resolution

        camera_dict = json.load(
            open(os.path.join(self.cfg.dataroot, "transforms.json"), "r")
        )
        assert camera_dict["camera_model"] == "OPENCV"

        frames = camera_dict["frames"]
        frames = frames[:: self.cfg.train_data_interval]
        frames_proj = []
        frames_c2w = []
        frames_position = []
        frames_direction = []
        frames_img = []

        self.frame_w = frames[0]["w"] // scale
        self.frame_h = frames[0]["h"] // scale
        threestudio.info("Loading frames...")
        self.n_frames = len(frames)

        c2w_list = []
        for frame in tqdm(frames):
            extrinsic: Float[Tensor, "4 4"] = torch.as_tensor(
                frame["transform_matrix"], dtype=torch.float32
            )
            c2w = extrinsic
            c2w_list.append(c2w)
        c2w_list = torch.stack(c2w_list, dim=0)

        if self.cfg.camera_layout == "around":
            c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0)
        elif self.cfg.camera_layout == "front":
            assert self.cfg.camera_distance > 0
            c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0)
            z_vector = torch.zeros(c2w_list.shape[0], 3, 1)
            z_vector[:, 2, :] = -1
            rot_z_vector = c2w_list[:, :3, :3] @ z_vector
            rot_z_vector = torch.mean(rot_z_vector, dim=0).unsqueeze(0)
            c2w_list[:, :3, 3] -= rot_z_vector[:, :, 0] * self.cfg.camera_distance
        else:
            raise ValueError(
                f"Unknown camera layout {self.cfg.camera_layout}. Now support only around and front."
            )

        for idx, frame in tqdm(enumerate(frames)):
            intrinsic: Float[Tensor, "4 4"] = torch.eye(4)
            intrinsic[0, 0] = frame["fl_x"] / scale
            intrinsic[1, 1] = frame["fl_y"] / scale
            intrinsic[0, 2] = frame["cx"] / scale
            intrinsic[1, 2] = frame["cy"] / scale

            frame_path = os.path.join(self.cfg.dataroot, frame["file_path"])
            img = cv2.imread(frame_path)[:, :, ::-1].copy()
            img = cv2.resize(img, (self.frame_w, self.frame_h))
            img: Float[Tensor, "H W 3"] = torch.FloatTensor(img) / 255
            frames_img.append(img)

            direction: Float[Tensor, "H W 3"] = get_ray_directions(
                self.frame_h,
                self.frame_w,
                (intrinsic[0, 0], intrinsic[1, 1]),
                (intrinsic[0, 2], intrinsic[1, 2]),
                use_pixel_centers=False,
            )

            c2w = c2w_list[idx]
            camera_position: Float[Tensor, "3"] = c2w[:3, 3:].reshape(-1)

            near = 0.1
            far = 1000.0
            proj = convert_proj(intrinsic, self.frame_h, self.frame_w, near, far)
            proj: Float[Tensor, "4 4"] = torch.FloatTensor(proj)
            frames_proj.append(proj)
            frames_c2w.append(c2w)
            frames_position.append(camera_position)
            frames_direction.append(direction)
        threestudio.info("Loaded frames.")

        self.frames_proj: Float[Tensor, "B 4 4"] = torch.stack(frames_proj, dim=0)
        self.frames_c2w: Float[Tensor, "B 4 4"] = torch.stack(frames_c2w, dim=0)
        self.frames_position: Float[Tensor, "B 3"] = torch.stack(frames_position, dim=0)
        self.frames_direction: Float[Tensor, "B H W 3"] = torch.stack(
            frames_direction, dim=0
        )
        self.frames_img: Float[Tensor, "B H W 3"] = torch.stack(frames_img, dim=0)

        self.rays_o, self.rays_d = get_rays(
            self.frames_direction, self.frames_c2w, keepdim=True
        )
        self.mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix(
            self.frames_c2w, self.frames_proj
        )
        self.light_positions: Float[Tensor, "B 3"] = torch.zeros_like(
            self.frames_position
        )

    def __iter__(self):
        while True:
            yield {}

    def collate(self, batch):
        index = torch.randint(0, self.n_frames, (1,)).item()
        return {
            "index": index,
            "rays_o": self.rays_o[index : index + 1],
            "rays_d": self.rays_d[index : index + 1],
            "mvp_mtx": self.mvp_mtx[index : index + 1],
            "c2w": self.frames_c2w[index : index + 1],
            "camera_positions": self.frames_position[index : index + 1],
            "light_positions": self.light_positions[index : index + 1],
            "gt_rgb": self.frames_img[index : index + 1],
            "height": self.frame_h,
            "width": self.frame_w,
        }


class MultiviewDataset(Dataset):
    def __init__(self, cfg: Any, split: str) -> None:
        super().__init__()
        self.cfg: MultiviewsDataModuleConfig = cfg

        assert self.cfg.eval_batch_size == 1
        scale = self.cfg.eval_downsample_resolution

        camera_dict = json.load(
            open(os.path.join(self.cfg.dataroot, "transforms.json"), "r")
        )
        assert camera_dict["camera_model"] == "OPENCV"

        frames = camera_dict["frames"]
        frames = frames[:: self.cfg.eval_data_interval]
        frames_proj = []
        frames_c2w = []
        frames_position = []
        frames_direction = []
        frames_img = []

        self.frame_w = frames[0]["w"] // scale
        self.frame_h = frames[0]["h"] // scale
        threestudio.info("Loading frames...")
        self.n_frames = len(frames)

        c2w_list = []
        for frame in tqdm(frames):
            extrinsic: Float[Tensor, "4 4"] = torch.as_tensor(
                frame["transform_matrix"], dtype=torch.float32
            )
            c2w = extrinsic
            c2w_list.append(c2w)
        c2w_list = torch.stack(c2w_list, dim=0)

        if self.cfg.camera_layout == "around":
            c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0)
        elif self.cfg.camera_layout == "front":
            assert self.cfg.camera_distance > 0
            c2w_list[:, :3, 3] -= torch.mean(c2w_list[:, :3, 3], dim=0).unsqueeze(0)
            z_vector = torch.zeros(c2w_list.shape[0], 3, 1)
            z_vector[:, 2, :] = -1
            rot_z_vector = c2w_list[:, :3, :3] @ z_vector
            rot_z_vector = torch.mean(rot_z_vector, dim=0).unsqueeze(0)
            c2w_list[:, :3, 3] -= rot_z_vector[:, :, 0] * self.cfg.camera_distance
        else:
            raise ValueError(
                f"Unknown camera layout {self.cfg.camera_layout}. Now support only around and front."
            )

        if not (self.cfg.eval_interpolation is None):
            idx0 = self.cfg.eval_interpolation[0]
            idx1 = self.cfg.eval_interpolation[1]
            eval_nums = self.cfg.eval_interpolation[2]
            frame = frames[idx0]
            intrinsic: Float[Tensor, "4 4"] = torch.eye(4)
            intrinsic[0, 0] = frame["fl_x"] / scale
            intrinsic[1, 1] = frame["fl_y"] / scale
            intrinsic[0, 2] = frame["cx"] / scale
            intrinsic[1, 2] = frame["cy"] / scale
            for ratio in np.linspace(0, 1, eval_nums):
                img: Float[Tensor, "H W 3"] = torch.zeros(
                    (self.frame_h, self.frame_w, 3)
                )
                frames_img.append(img)
                direction: Float[Tensor, "H W 3"] = get_ray_directions(
                    self.frame_h,
                    self.frame_w,
                    (intrinsic[0, 0], intrinsic[1, 1]),
                    (intrinsic[0, 2], intrinsic[1, 2]),
                    use_pixel_centers=False,
                )

                c2w = torch.FloatTensor(
                    inter_pose(c2w_list[idx0], c2w_list[idx1], ratio)
                )
                camera_position: Float[Tensor, "3"] = c2w[:3, 3:].reshape(-1)

                near = 0.1
                far = 1000.0
                proj = convert_proj(intrinsic, self.frame_h, self.frame_w, near, far)
                proj: Float[Tensor, "4 4"] = torch.FloatTensor(proj)
                frames_proj.append(proj)
                frames_c2w.append(c2w)
                frames_position.append(camera_position)
                frames_direction.append(direction)
        else:
            for idx, frame in tqdm(enumerate(frames)):
                intrinsic: Float[Tensor, "4 4"] = torch.eye(4)
                intrinsic[0, 0] = frame["fl_x"] / scale
                intrinsic[1, 1] = frame["fl_y"] / scale
                intrinsic[0, 2] = frame["cx"] / scale
                intrinsic[1, 2] = frame["cy"] / scale

                frame_path = os.path.join(self.cfg.dataroot, frame["file_path"])
                img = cv2.imread(frame_path)[:, :, ::-1].copy()
                img = cv2.resize(img, (self.frame_w, self.frame_h))
                img: Float[Tensor, "H W 3"] = torch.FloatTensor(img) / 255
                frames_img.append(img)

                direction: Float[Tensor, "H W 3"] = get_ray_directions(
                    self.frame_h,
                    self.frame_w,
                    (intrinsic[0, 0], intrinsic[1, 1]),
                    (intrinsic[0, 2], intrinsic[1, 2]),
                    use_pixel_centers=False,
                )

                c2w = c2w_list[idx]
                camera_position: Float[Tensor, "3"] = c2w[:3, 3:].reshape(-1)

                near = 0.1
                far = 1000.0
                K = intrinsic
                proj = [
                    [
                        2 * K[0, 0] / self.frame_w,
                        -2 * K[0, 1] / self.frame_w,
                        (self.frame_w - 2 * K[0, 2]) / self.frame_w,
                        0,
                    ],
                    [
                        0,
                        -2 * K[1, 1] / self.frame_h,
                        (self.frame_h - 2 * K[1, 2]) / self.frame_h,
                        0,
                    ],
                    [
                        0,
                        0,
                        (-far - near) / (far - near),
                        -2 * far * near / (far - near),
                    ],
                    [0, 0, -1, 0],
                ]
                proj: Float[Tensor, "4 4"] = torch.FloatTensor(proj)
                frames_proj.append(proj)
                frames_c2w.append(c2w)
                frames_position.append(camera_position)
                frames_direction.append(direction)
        threestudio.info("Loaded frames.")

        self.frames_proj: Float[Tensor, "B 4 4"] = torch.stack(frames_proj, dim=0)
        self.frames_c2w: Float[Tensor, "B 4 4"] = torch.stack(frames_c2w, dim=0)
        self.frames_position: Float[Tensor, "B 3"] = torch.stack(frames_position, dim=0)
        self.frames_direction: Float[Tensor, "B H W 3"] = torch.stack(
            frames_direction, dim=0
        )
        self.frames_img: Float[Tensor, "B H W 3"] = torch.stack(frames_img, dim=0)

        self.rays_o, self.rays_d = get_rays(
            self.frames_direction, self.frames_c2w, keepdim=True
        )
        self.mvp_mtx: Float[Tensor, "B 4 4"] = get_mvp_matrix(
            self.frames_c2w, self.frames_proj
        )
        self.light_positions: Float[Tensor, "B 3"] = torch.zeros_like(
            self.frames_position
        )

    def __len__(self):
        return self.frames_proj.shape[0]

    def __getitem__(self, index):
        return {
            "index": index,
            "rays_o": self.rays_o[index],
            "rays_d": self.rays_d[index],
            "mvp_mtx": self.mvp_mtx[index],
            "c2w": self.frames_c2w[index],
            "camera_positions": self.frames_position[index],
            "light_positions": self.light_positions[index],
            "gt_rgb": self.frames_img[index],
        }

    def __iter__(self):
        while True:
            yield {}

    def collate(self, batch):
        batch = torch.utils.data.default_collate(batch)
        batch.update({"height": self.frame_h, "width": self.frame_w})
        return batch


@register("multiview-camera-datamodule")
class MultiviewDataModule(pl.LightningDataModule):
    cfg: MultiviewsDataModuleConfig

    def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
        super().__init__()
        self.cfg = parse_structured(MultiviewsDataModuleConfig, cfg)

    def setup(self, stage=None) -> None:
        if stage in [None, "fit"]:
            self.train_dataset = MultiviewIterableDataset(self.cfg)
        if stage in [None, "fit", "validate"]:
            self.val_dataset = MultiviewDataset(self.cfg, "val")
        if stage in [None, "test", "predict"]:
            self.test_dataset = MultiviewDataset(self.cfg, "test")

    def prepare_data(self):
        pass

    def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader:
        return DataLoader(
            dataset,
            num_workers=1,  # type: ignore
            batch_size=batch_size,
            collate_fn=collate_fn,
        )

    def train_dataloader(self) -> DataLoader:
        return self.general_loader(
            self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate
        )

    def val_dataloader(self) -> DataLoader:
        return self.general_loader(
            self.val_dataset, batch_size=1, collate_fn=self.val_dataset.collate
        )
        # return self.general_loader(self.train_dataset, batch_size=None, collate_fn=self.train_dataset.collate)

    def test_dataloader(self) -> DataLoader:
        return self.general_loader(
            self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate
        )

    def predict_dataloader(self) -> DataLoader:
        return self.general_loader(
            self.test_dataset, batch_size=1, collate_fn=self.test_dataset.collate
        )