RAG / openai_text-embedding-ada-002 /fixed_chunks /_chat_templating.txt_chunk_1.txt
thenativefox
Added split files and tables
939262b
raw
history blame contribute delete
1.64 kB
Now that our input is formatted correctly for Zephyr, we can use the model to generate a response to the user's question:
python
outputs = model.generate(tokenized_chat, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))
This will yield:
text
<|system|>
You are a friendly chatbot who always responds in the style of a pirate</s>
<|user|>
How many helicopters can a human eat in one sitting?</s>
<|assistant|>
Matey, I'm afraid I must inform ye that humans cannot eat helicopters. Helicopters are not food, they are flying machines. Food is meant to be eaten, like a hearty plate o' grog, a savory bowl o' stew, or a delicious loaf o' bread. But helicopters, they be for transportin' and movin' around, not for eatin'. So, I'd say none, me hearties. None at all.
Arr, 'twas easy after all!
Is there an automated pipeline for chat?
Yes, there is! Our text generation pipelines support chat inputs, which makes it easy to use chat models. In the past,
we used to use a dedicated "ConversationalPipeline" class, but this has now been deprecated and its functionality
has been merged into the [TextGenerationPipeline]. Let's try the Zephyr example again, but this time using
a pipeline:
thon
from transformers import pipeline
pipe = pipeline("text-generation", "HuggingFaceH4/zephyr-7b-beta")
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
print(pipe(messages, max_new_tokens=128)[0]['generated_text'][-1]) # Print the assistant's response