File size: 18,138 Bytes
d6bf15a
3546c65
 
d6bf15a
 
 
12d42ff
3546c65
d6bf15a
 
0938b0e
12d42ff
 
 
 
 
 
d6bf15a
 
9dd0b76
d6bf15a
 
12d42ff
 
 
 
 
 
 
 
 
 
9a9e06d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d42ff
 
 
 
9dd0b76
12d42ff
9a9e06d
 
 
 
 
 
 
 
 
12d42ff
 
9dd0b76
 
 
 
 
12d42ff
9dd0b76
 
 
 
 
 
 
 
 
12d42ff
 
 
9dd0b76
 
12d42ff
 
9dd0b76
 
 
 
 
 
 
 
 
 
 
 
12d42ff
9dd0b76
 
12d42ff
 
 
 
9dd0b76
12d42ff
9dd0b76
12d42ff
 
 
 
 
9a9e06d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d42ff
9dd0b76
 
 
 
 
 
12d42ff
 
9dd0b76
12d42ff
 
 
9dd0b76
 
 
 
 
 
12d42ff
9dd0b76
12d42ff
9dd0b76
12d42ff
9dd0b76
12d42ff
 
 
9dd0b76
12d42ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a9e06d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d42ff
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd0b76
 
 
 
 
12d42ff
 
 
 
 
 
 
9a9e06d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import os
import re
import json
import time
import asyncio
import aiohttp
import requests
import httpx
from PIL import Image
from io import BytesIO
from typing import Dict, List, Any, Union, Optional
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager
from geopy.geocoders import Nominatim
from waybackpy import WaybackMachineCDXServerAPI
import whois
from datetime import datetime
from googlesearch import search as google_search
import base64
import io

class OSINTEngine:
    """OSINT capabilities for advanced information gathering"""
    
    def __init__(self):
        self.chrome_options = Options()
        self.chrome_options.add_argument('--headless')
        self.chrome_options.add_argument('--no-sandbox')
        self.chrome_options.add_argument('--disable-dev-shm-usage')
        self.setup_apis()
        self.session = None
        self.platforms = {
            "twitter": "https://twitter.com/{}",
            "instagram": "https://instagram.com/{}",
            "facebook": "https://facebook.com/{}",
            "linkedin": "https://linkedin.com/in/{}",
            "github": "https://github.com/{}",
            "reddit": "https://reddit.com/user/{}",
            "youtube": "https://youtube.com/@{}",
            "tiktok": "https://tiktok.com/@{}",
            "pinterest": "https://pinterest.com/{}",
            "snapchat": "https://snapchat.com/add/{}",
            "twitch": "https://twitch.tv/{}",
            "medium": "https://medium.com/@{}",
            "devto": "https://dev.to/{}",
            "stackoverflow": "https://stackoverflow.com/users/{}"
        }

    def setup_apis(self):
        """Initialize API clients"""
        self.geolocator = Nominatim(user_agent="intelligent_search")
        self.http_client = httpx.AsyncClient()

    async def initialize(self):
        if not self.session:
            self.session = aiohttp.ClientSession()

    async def close(self):
        if self.session:
            await self.session.close()
            self.session = None

    async def search_username(self, username: str) -> Dict[str, Any]:
        """Search for username across multiple platforms"""
        results = {
            'platforms': [],
            'social_media': {},
            'websites': []
        }
        
        # Common social media platforms
        platforms = [
            {'name': 'GitHub', 'url': f'https://github.com/{username}'},
            {'name': 'Twitter', 'url': f'https://twitter.com/{username}'},
            {'name': 'Instagram', 'url': f'https://instagram.com/{username}'},
            {'name': 'LinkedIn', 'url': f'https://linkedin.com/in/{username}'},
            {'name': 'Facebook', 'url': f'https://facebook.com/{username}'},
            {'name': 'YouTube', 'url': f'https://youtube.com/@{username}'},
        ]
        
        async with aiohttp.ClientSession() as session:
            tasks = []
            for platform in platforms:
                task = self.check_profile(session, platform['url'], platform['name'])
                tasks.append(task)
            
            platform_results = await asyncio.gather(*tasks)
            results['platforms'] = [r for r in platform_results if r is not None]
        
        # Google search for additional mentions
        try:
            search_query = f'"{username}" OR "@{username}" -site:twitter.com -site:facebook.com -site:instagram.com'
            web_results = list(google_search(search_query, num_results=5))
            results['websites'] = web_results
        except Exception as e:
            results['websites'] = [str(e)]
        
        return results

    async def check_profile(self, session, url: str, platform: str) -> Dict[str, str]:
        """Check if a profile exists on a platform"""
        try:
            async with session.get(url) as response:
                if response.status == 200:
                    return {
                        'platform': platform,
                        'url': url,
                        'exists': True
                    }
        except:
            pass
        return None

    async def check_username(self, username: str, platform: str = "all") -> List[Dict]:
        await self.initialize()
        results = []
        
        platforms_to_check = [platform] if platform != "all" else self.platforms.keys()
        
        for platform_name in platforms_to_check:
            if platform_name in self.platforms:
                url = self.platforms[platform_name].format(username)
                try:
                    async with self.session.get(url) as response:
                        exists = response.status == 200
                        results.append({
                            "platform": platform_name,
                            "url": url,
                            "exists": exists
                        })
                except:
                    results.append({
                        "platform": platform_name,
                        "url": url,
                        "exists": False,
                        "error": "Connection failed"
                    })
        
        return results

    async def search_image(self, image_url: str) -> Dict[str, Any]:
        """Image analysis and reverse search"""
        results = {
            'analysis': {},
            'similar_images': [],
            'error': None
        }
        
        try:
            # Download and analyze image
            response = requests.get(image_url)
            img = Image.open(BytesIO(response.content))
            
            # Basic image analysis
            results['analysis'] = {
                'format': img.format,
                'size': img.size,
                'mode': img.mode
            }
            
            # Perform reverse image search using Google Lens
            search_url = f"https://lens.google.com/uploadbyurl?url={image_url}"
            results['similar_images'].append({
                'source': 'Google Lens',
                'url': search_url
            })
            
        except Exception as e:
            results['error'] = str(e)
            
        return results

    async def gather_personal_info(self, data: Dict[str, str]) -> Dict[str, Any]:
        """Gather personal information from various sources"""
        results = {}
        
        if 'location' in data:
            results['location'] = await self.analyze_location(data['location'])
            
        if 'domain' in data:
            results['domain'] = self.analyze_domain(data['domain'])
            
        return results

    async def analyze_location(self, location: str) -> Dict[str, Any]:
        """Analyze location information"""
        try:
            location_data = self.geolocator.geocode(location)
            if location_data:
                return {
                    'address': location_data.address,
                    'latitude': location_data.latitude,
                    'longitude': location_data.longitude,
                    'raw': location_data.raw
                }
        except Exception as e:
            return {'error': str(e)}
        return None

    def analyze_domain(self, domain: str) -> Dict[str, Any]:
        """Analyze domain information"""
        try:
            domain_info = whois.whois(domain)
            return {
                'registrar': domain_info.registrar,
                'creation_date': domain_info.creation_date,
                'expiration_date': domain_info.expiration_date,
                'last_updated': domain_info.updated_date,
                'status': domain_info.status
            }
        except Exception as e:
            return {'error': str(e)}

    async def search_historical_data(self, url: str) -> List[Dict[str, Any]]:
        """Search for historical data using Wayback Machine"""
        results = []
        
        try:
            user_agent = "Mozilla/5.0"
            cdx = WaybackMachineCDXServerAPI(url, user_agent)
            
            for snapshot in cdx.snapshots():
                results.append({
                    'timestamp': snapshot.timestamp,
                    'url': snapshot.archive_url,
                    'status': snapshot.status_code,
                    'mime_type': snapshot.mime_type
                })
                
        except Exception as e:
            results.append({'error': str(e)})
            
        return results

    async def search_person(self, name: str, location: Optional[str] = None) -> List[Dict]:
        await self.initialize()
        results = []
        
        # Format search query
        query = f"{name}"
        if location:
            query += f" {location}"
            
        # Simulate searching various sources
        sources = ["social_media", "news", "public_records", "professional"]
        
        for source in sources:
            # Simulate different data sources
            if source == "social_media":
                profile = {
                    "name": name,
                    "location": location,
                    "source": "Social Media",
                    "profile_image": "https://example.com/profile.jpg",
                    "social_links": [
                        {"platform": "LinkedIn", "url": f"https://linkedin.com/in/{name.lower().replace(' ', '-')}"},
                        {"platform": "Twitter", "url": f"https://twitter.com/{name.lower().replace(' ', '')}"}
                    ],
                    "occupation": "Professional",
                    "last_seen": datetime.now().strftime("%Y-%m-%d")
                }
                results.append(profile)
                
            elif source == "news":
                news = {
                    "name": name,
                    "source": "News Articles",
                    "mentions": [
                        {
                            "title": f"Article about {name}",
                            "url": "https://example.com/news",
                            "date": "2023-01-01"
                        }
                    ]
                }
                results.append(news)
                
            elif source == "public_records":
                record = {
                    "name": name,
                    "source": "Public Records",
                    "location": location,
                    "age_range": "25-35",
                    "possible_relatives": ["Jane Doe", "John Doe Sr."],
                    "previous_locations": ["New York, NY", "Los Angeles, CA"]
                }
                results.append(record)
                
            elif source == "professional":
                prof = {
                    "name": name,
                    "source": "Professional Records",
                    "education": ["University Example"],
                    "work_history": ["Company A", "Company B"],
                    "skills": ["Leadership", "Management"]
                }
                results.append(prof)
                
        return results

    async def get_person_details(self, person_id: str) -> Dict:
        """Get detailed information about a specific person"""
        await self.initialize()
        
        # Simulate gathering detailed information
        details = {
            "personal": {
                "name": person_id,
                "age_range": "25-35",
                "locations": ["Current City, Country", "Previous City, Country"],
                "education": ["University Name", "High School Name"],
                "occupation": "Current Occupation"
            },
            "social_media": {
                "profiles": [
                    {
                        "platform": "LinkedIn",
                        "url": f"https://linkedin.com/in/{person_id}",
                        "last_active": "2023-01-01"
                    },
                    {
                        "platform": "Twitter",
                        "url": f"https://twitter.com/{person_id}",
                        "last_active": "2023-01-01"
                    }
                ]
            },
            "contact": {
                "email_pattern": "j***@example.com",
                "phone_pattern": "+1 (***) ***-**89"
            },
            "images": [
                {
                    "url": "https://example.com/profile1.jpg",
                    "source": "LinkedIn",
                    "date": "2023-01-01"
                }
            ],
            "activities": {
                "recent_posts": [
                    {
                        "platform": "Twitter",
                        "content": "Example post content",
                        "date": "2023-01-01"
                    }
                ],
                "mentions": [
                    {
                        "source": "News Article",
                        "title": "Article Title",
                        "url": "https://example.com/article",
                        "date": "2023-01-01"
                    }
                ]
            }
        }
        
        return details

    async def analyze_image(self, image_path: str) -> Dict:
        """Analyze an image and return information about it"""
        try:
            # Open and analyze the image
            img = Image.open(image_path if os.path.exists(image_path) else io.BytesIO(requests.get(image_path).content))
            
            analysis = {
                "format": img.format,
                "size": f"{img.size[0]}x{img.size[1]}",
                "mode": img.mode,
                "metadata": {},
            }
            
            # Extract EXIF data if available
            if hasattr(img, '_getexif') and img._getexif():
                exif = img._getexif()
                if exif:
                    analysis["metadata"] = {
                        "datetime": exif.get(306, "Unknown"),
                        "make": exif.get(271, "Unknown"),
                        "model": exif.get(272, "Unknown"),
                        "software": exif.get(305, "Unknown")
                    }
            
            return analysis
        except Exception as e:
            return {"error": str(e)}

    async def find_similar_images(self, image_url: str) -> List[Dict]:
        """Find similar images"""
        # Simulate finding similar images
        return [
            {
                "url": "https://example.com/similar1.jpg",
                "similarity": 0.95,
                "source": "Website A"
            },
            {
                "url": "https://example.com/similar2.jpg",
                "similarity": 0.85,
                "source": "Website B"
            }
        ]

    async def get_location_info(self, location: str) -> Dict:
        """Get information about a location"""
        # Simulate location information retrieval
        return {
            "name": location,
            "coordinates": {"lat": 40.7128, "lng": -74.0060},
            "country": "United States",
            "timezone": "America/New_York",
            "population": "8.4 million",
            "weather": "Sunny, 72°F"
        }

    async def get_domain_info(self, domain: str) -> Dict:
        """Get information about a domain"""
        # Simulate domain information retrieval
        return {
            "domain": domain,
            "registrar": "Example Registrar",
            "creation_date": "2020-01-01",
            "expiration_date": "2024-01-01",
            "nameservers": ["ns1.example.com", "ns2.example.com"],
            "ip_address": "192.0.2.1",
            "location": "United States"
        }

# Helper function to create document from gathered information
def create_report(data: Dict[str, Any], template: str = "default") -> str:
    """Create a formatted report from gathered information"""
    if template == "default":
        report = "# OSINT Investigation Report\n\n"
        report += f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
        
        for section, content in data.items():
            report += f"## {section.title()}\n"
            if isinstance(content, dict):
                for key, value in content.items():
                    report += f"* {key}: {value}\n"
            elif isinstance(content, list):
                for item in content:
                    if isinstance(item, dict):
                        for k, v in item.items():
                            report += f"* {k}: {v}\n"
                    else:
                        report += f"* {item}\n"
            else:
                report += f"{content}\n"
            report += "\n"
            
        return report
    else:
        raise ValueError(f"Template '{template}' not found")

async def create_report_from_data(data: Dict) -> Dict:
    """Create a formatted report from the gathered data"""
    engine = OSINTEngine()
    
    try:
        report = {}
        
        if "username" in data:
            report["platforms"] = await engine.check_username(data["username"], data.get("platform", "all"))
            
        if "image_url" in data:
            report["analysis"] = await engine.analyze_image(data["image_url"])
            report["similar_images"] = await engine.find_similar_images(data["image_url"])
            
        if "location" in data:
            report["location"] = await engine.get_location_info(data["location"])
            
        if "domain" in data:
            report["domain"] = await engine.get_domain_info(data["domain"])
            
        if "name" in data:
            report["matches"] = await engine.search_person(data["name"], data.get("location"))
            
        if "person_id" in data:
            report["details"] = await engine.get_person_details(data["person_id"])
        
        await engine.close()
        return report
        
    except Exception as e:
        await engine.close()
        return {"error": str(e)}