Spaces:
Runtime error
Runtime error
File size: 5,266 Bytes
dcc91e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
from typing import Dict, List, Any
import requests
from bs4 import BeautifulSoup
from duckduckgo_search import ddg
from transformers import pipeline
from langchain.embeddings import HuggingFaceEmbeddings
import time
import json
import os
from urllib.parse import urlparse
class ModelManager:
"""Manages AI models for text processing"""
def __init__(self):
# Initialize with smaller, CPU-friendly models
self.summarizer = pipeline(
"summarization",
model="facebook/bart-base",
device=-1 # Use CPU
)
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
def generate_summary(self, text: str, max_length: int = 150) -> str:
"""Generate a concise summary of the text"""
if not text or len(text.split()) < 50:
return text
try:
summary = self.summarizer(
text,
max_length=max_length,
min_length=30,
do_sample=False
)[0]['summary_text']
return summary
except Exception as e:
print(f"Error in summarization: {e}")
return text[:500] + "..."
class ContentProcessor:
"""Processes and analyzes different types of content"""
def __init__(self):
self.model_manager = ModelManager()
def process_content(self, content: str) -> Dict[str, Any]:
"""Process content and generate insights"""
if not content:
return {"summary": "", "insights": []}
try:
summary = self.model_manager.generate_summary(content)
return {
"summary": summary,
"insights": [] # Simplified for CPU deployment
}
except Exception as e:
print(f"Error processing content: {e}")
return {"summary": content[:500] + "...", "insights": []}
class WebSearchEngine:
"""Main search engine class"""
def __init__(self):
self.processor = ContentProcessor()
self.session = requests.Session()
self.request_delay = 1.0
self.last_request_time = 0
def is_valid_url(self, url: str) -> bool:
"""Check if URL is valid for crawling"""
try:
parsed = urlparse(url)
return bool(parsed.netloc and parsed.scheme in ['http', 'https'])
except:
return False
def get_metadata(self, soup: BeautifulSoup) -> Dict[str, str]:
"""Extract metadata from page"""
metadata = {}
# Get title
title = soup.find('title')
if title:
metadata['title'] = title.text.strip()
# Get meta description
desc = soup.find('meta', attrs={'name': 'description'})
if desc:
metadata['description'] = desc.get('content', '')
# Get publication date
date = soup.find('meta', attrs={'property': 'article:published_time'})
if date:
metadata['published_date'] = date.get('content', '').split('T')[0]
return metadata
def process_url(self, url: str) -> Dict[str, Any]:
"""Process a single URL"""
if not self.is_valid_url(url):
return None
try:
# Rate limiting
current_time = time.time()
if current_time - self.last_request_time < self.request_delay:
time.sleep(self.request_delay)
response = self.session.get(url, timeout=10)
self.last_request_time = time.time()
if response.status_code != 200:
return None
soup = BeautifulSoup(response.text, 'lxml')
metadata = self.get_metadata(soup)
# Extract main content (simplified)
content = ' '.join([p.text for p in soup.find_all('p')])
processed = self.processor.process_content(content)
return {
'url': url,
'title': metadata.get('title', url),
'summary': processed['summary'],
'published_date': metadata.get('published_date', '')
}
except Exception as e:
print(f"Error processing URL {url}: {e}")
return None
def search(self, query: str, max_results: int = 5) -> List[Dict[str, Any]]:
"""Perform search and process results"""
try:
# Perform DuckDuckGo search
search_results = ddg(query, max_results=max_results)
results = []
for result in search_results:
processed = self.process_url(result['link'])
if processed:
results.append(processed)
return results[:max_results]
except Exception as e:
print(f"Error in search: {e}")
return []
# Main search function
def search(query: str, max_results: int = 5) -> List[Dict[str, Any]]:
"""Main search function"""
engine = WebSearchEngine()
return engine.search(query, max_results)
|