File size: 8,013 Bytes
dcc91e6
 
 
 
 
 
 
 
 
 
12d42ff
dcc91e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d42ff
 
 
15a525a
 
12d42ff
 
 
15a525a
12d42ff
 
 
15a525a
12d42ff
 
 
15a525a
 
 
 
12d42ff
 
 
15a525a
12d42ff
 
 
15a525a
12d42ff
dcc91e6
 
 
 
 
 
 
12d42ff
dcc91e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d42ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcc91e6
 
 
 
 
 
12d42ff
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from typing import Dict, List, Any
import requests
from bs4 import BeautifulSoup
from duckduckgo_search import ddg
from transformers import pipeline
from langchain.embeddings import HuggingFaceEmbeddings
import time
import json
import os
from urllib.parse import urlparse
import asyncio

class ModelManager:
    """Manages AI models for text processing"""
    def __init__(self):
        # Initialize with smaller, CPU-friendly models
        self.summarizer = pipeline(
            "summarization",
            model="facebook/bart-base",
            device=-1  # Use CPU
        )
        self.embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-MiniLM-L6-v2"
        )
    
    def generate_summary(self, text: str, max_length: int = 150) -> str:
        """Generate a concise summary of the text"""
        if not text or len(text.split()) < 50:
            return text
        
        try:
            summary = self.summarizer(
                text,
                max_length=max_length,
                min_length=30,
                do_sample=False
            )[0]['summary_text']
            return summary
        except Exception as e:
            print(f"Error in summarization: {e}")
            return text[:500] + "..."

class ContentProcessor:
    """Processes and analyzes different types of content"""
    def __init__(self):
        self.model_manager = ModelManager()
    
    def process_content(self, content: str) -> Dict[str, Any]:
        """Process content and generate insights"""
        if not content:
            return {"summary": "", "insights": []}
        
        try:
            summary = self.model_manager.generate_summary(content)
            return {
                "summary": summary,
                "insights": []  # Simplified for CPU deployment
            }
        except Exception as e:
            print(f"Error processing content: {e}")
            return {"summary": content[:500] + "...", "insights": []}

class OSINTEngine:
    """Main OSINT engine class"""
    def __init__(self):
        from osint_engine import OSINTEngine as ExternalOSINT
        self.engine = ExternalOSINT()
    
    async def search_username(self, query: str) -> Dict[str, Any]:
        """Search for usernames"""
        return await self.engine.search_username(query)
    
    async def search_image(self, query: str) -> Dict[str, Any]:
        """Search for images"""
        return await self.engine.search_image(query)
    
    async def search_social_media(self, query: str, platform: str) -> Dict[str, Any]:
        """Search for social media profiles"""
        results = await self.engine.search_username(query)
        if platform:
            return {platform: [r for r in results.get('platforms', []) if r['platform'].lower() == platform.lower()]}
        return results
    
    async def gather_personal_info(self, kwargs: Dict[str, Any]) -> Dict[str, Any]:
        """Gather personal information"""
        return await self.engine.gather_personal_info(kwargs)
    
    async def search_historical_data(self, query: str) -> Dict[str, Any]:
        """Search for historical data"""
        return await self.engine.search_historical_data(query)

class WebSearchEngine:
    """Main search engine class"""
    def __init__(self):
        self.processor = ContentProcessor()
        self.session = requests.Session()
        self.request_delay = 1.0
        self.last_request_time = 0
        self.osint_engine = OSINTEngine()  # Add OSINT engine
    
    def is_valid_url(self, url: str) -> bool:
        """Check if URL is valid for crawling"""
        try:
            parsed = urlparse(url)
            return bool(parsed.netloc and parsed.scheme in ['http', 'https'])
        except:
            return False
    
    def get_metadata(self, soup: BeautifulSoup) -> Dict[str, str]:
        """Extract metadata from page"""
        metadata = {}
        
        # Get title
        title = soup.find('title')
        if title:
            metadata['title'] = title.text.strip()
        
        # Get meta description
        desc = soup.find('meta', attrs={'name': 'description'})
        if desc:
            metadata['description'] = desc.get('content', '')
        
        # Get publication date
        date = soup.find('meta', attrs={'property': 'article:published_time'})
        if date:
            metadata['published_date'] = date.get('content', '').split('T')[0]
        
        return metadata
    
    def process_url(self, url: str) -> Dict[str, Any]:
        """Process a single URL"""
        if not self.is_valid_url(url):
            return None
        
        try:
            # Rate limiting
            current_time = time.time()
            if current_time - self.last_request_time < self.request_delay:
                time.sleep(self.request_delay)
            
            response = self.session.get(url, timeout=10)
            self.last_request_time = time.time()
            
            if response.status_code != 200:
                return None
            
            soup = BeautifulSoup(response.text, 'lxml')
            metadata = self.get_metadata(soup)
            
            # Extract main content (simplified)
            content = ' '.join([p.text for p in soup.find_all('p')])
            processed = self.processor.process_content(content)
            
            return {
                'url': url,
                'title': metadata.get('title', url),
                'summary': processed['summary'],
                'published_date': metadata.get('published_date', '')
            }
        
        except Exception as e:
            print(f"Error processing URL {url}: {e}")
            return None
    
    def search(self, query: str, max_results: int = 5) -> List[Dict[str, Any]]:
        """Perform search and process results"""
        try:
            # Perform DuckDuckGo search
            search_results = ddg(query, max_results=max_results)
            
            results = []
            for result in search_results:
                processed = self.process_url(result['link'])
                if processed:
                    results.append(processed)
            
            return results[:max_results]
            
        except Exception as e:
            print(f"Error in search: {e}")
            return []
    
    async def advanced_search(self, query: str, search_type: str = "web", **kwargs) -> Dict[str, Any]:
        """Perform advanced search based on type"""
        results = {}
        
        try:
            if search_type == "web":
                results["web"] = self.search(query, kwargs.get("max_results", 5))
            elif search_type == "username":
                results["osint"] = await self.osint_engine.search_username(query)
            elif search_type == "image":
                results["image"] = await self.osint_engine.search_image(query)
            elif search_type == "social":
                results["social"] = await self.osint_engine.search_social_media(
                    query, 
                    kwargs.get("platform")
                )
            elif search_type == "personal":
                results["personal"] = await self.osint_engine.gather_personal_info(kwargs)
            elif search_type == "historical":
                results["historical"] = await self.osint_engine.search_historical_data(query)
            
        except Exception as e:
            results["error"] = str(e)
            
        return results

# Main search function
def search(query: str, max_results: int = 5) -> List[Dict[str, Any]]:
    """Main search function"""
    engine = WebSearchEngine()
    return engine.search(query, max_results)

# Main advanced search function
async def advanced_search(query: str, search_type: str = "web", **kwargs) -> Dict[str, Any]:
    """Main advanced search function"""
    engine = WebSearchEngine()
    return await engine.advanced_search(query, search_type, **kwargs)