|
""" |
|
Copyright(C) 2022-2023 Intel Corporation |
|
SPDX - License - Identifier: Apache - 2.0 |
|
|
|
""" |
|
import inspect |
|
from typing import Union, Optional, Any, List, Dict |
|
import numpy as np |
|
|
|
from openvino.runtime import Core |
|
|
|
from transformers import CLIPTokenizer |
|
import torch |
|
import random |
|
|
|
from diffusers import DiffusionPipeline |
|
from diffusers.schedulers import (DDIMScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler) |
|
|
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.utils import PIL_INTERPOLATION |
|
|
|
import cv2 |
|
import os |
|
import sys |
|
|
|
|
|
import concurrent.futures |
|
|
|
|
|
import PIL |
|
from PIL import Image |
|
import glob |
|
import json |
|
import time |
|
|
|
def scale_fit_to_window(dst_width:int, dst_height:int, image_width:int, image_height:int): |
|
""" |
|
Preprocessing helper function for calculating image size for resize with peserving original aspect ratio |
|
and fitting image to specific window size |
|
|
|
Parameters: |
|
dst_width (int): destination window width |
|
dst_height (int): destination window height |
|
image_width (int): source image width |
|
image_height (int): source image height |
|
Returns: |
|
result_width (int): calculated width for resize |
|
result_height (int): calculated height for resize |
|
""" |
|
im_scale = min(dst_height / image_height, dst_width / image_width) |
|
return int(im_scale * image_width), int(im_scale * image_height) |
|
|
|
def preprocess(image: PIL.Image.Image, ht=512, wt=512): |
|
""" |
|
Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512, |
|
then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that |
|
converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW. |
|
The function returns preprocessed input tensor and padding size, which can be used in postprocessing. |
|
|
|
Parameters: |
|
image (PIL.Image.Image): input image |
|
Returns: |
|
image (np.ndarray): preprocessed image tensor |
|
meta (Dict): dictionary with preprocessing metadata info |
|
""" |
|
|
|
src_width, src_height = image.size |
|
image = image.convert('RGB') |
|
dst_width, dst_height = scale_fit_to_window( |
|
wt, ht, src_width, src_height) |
|
image = np.array(image.resize((dst_width, dst_height), |
|
resample=PIL.Image.Resampling.LANCZOS))[None, :] |
|
|
|
pad_width = wt - dst_width |
|
pad_height = ht - dst_height |
|
pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0)) |
|
image = np.pad(image, pad, mode="constant") |
|
image = image.astype(np.float32) / 255.0 |
|
image = 2.0 * image - 1.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
|
|
return image, {"padding": pad, "src_width": src_width, "src_height": src_height} |
|
|
|
def try_enable_npu_turbo(device, core): |
|
import platform |
|
if "windows" in platform.system().lower(): |
|
if "NPU" in device and "3720" not in core.get_property('NPU', 'DEVICE_ARCHITECTURE'): |
|
try: |
|
core.set_property(properties={'NPU_TURBO': 'YES'},device_name='NPU') |
|
except: |
|
print(f"Failed loading NPU_TURBO for device {device}. Skipping... ") |
|
else: |
|
print_npu_turbo_art() |
|
else: |
|
print(f"Skipping NPU_TURBO for device {device}") |
|
elif "linux" in platform.system().lower(): |
|
if os.path.isfile('/sys/module/intel_vpu/parameters/test_mode'): |
|
with open('/sys/module/intel_vpu/version', 'r') as f: |
|
version = f.readline().split()[0] |
|
if tuple(map(int, version.split('.'))) < tuple(map(int, '1.9.0'.split('.'))): |
|
print(f"The driver intel_vpu-1.9.0 (or later) needs to be loaded for NPU Turbo (currently {version}). Skipping...") |
|
else: |
|
with open('/sys/module/intel_vpu/parameters/test_mode', 'r') as tm_file: |
|
test_mode = int(tm_file.readline().split()[0]) |
|
if test_mode == 512: |
|
print_npu_turbo_art() |
|
else: |
|
print("The driver >=intel_vpu-1.9.0 was must be loaded with " |
|
"\"modprobe intel_vpu test_mode=512\" to enable NPU_TURBO " |
|
f"(currently test_mode={test_mode}). Skipping...") |
|
else: |
|
print(f"The driver >=intel_vpu-1.9.0 must be loaded with \"modprobe intel_vpu test_mode=512\" to enable NPU_TURBO. Skipping...") |
|
else: |
|
print(f"This platform ({platform.system()}) does not support NPU Turbo") |
|
|
|
def result(var): |
|
return next(iter(var.values())) |
|
|
|
class StableDiffusionEngineAdvanced(DiffusionPipeline): |
|
def __init__(self, model="runwayml/stable-diffusion-v1-5", |
|
tokenizer="openai/clip-vit-large-patch14", |
|
device=["CPU", "CPU", "CPU", "CPU"]): |
|
try: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True) |
|
except: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) |
|
self.tokenizer.save_pretrained(model) |
|
|
|
self.core = Core() |
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) |
|
try_enable_npu_turbo(device, self.core) |
|
|
|
print("Loading models... ") |
|
|
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor: |
|
futures = { |
|
"unet_time_proj": executor.submit(self.core.compile_model, os.path.join(model, "unet_time_proj.xml"), device[0]), |
|
"text": executor.submit(self.load_model, model, "text_encoder", device[0]), |
|
"unet": executor.submit(self.load_model, model, "unet_int8", device[1]), |
|
"unet_neg": executor.submit(self.load_model, model, "unet_int8", device[2]) if device[1] != device[2] else None, |
|
"vae_decoder": executor.submit(self.load_model, model, "vae_decoder", device[3]), |
|
"vae_encoder": executor.submit(self.load_model, model, "vae_encoder", device[3]) |
|
} |
|
|
|
self.unet_time_proj = futures["unet_time_proj"].result() |
|
self.text_encoder = futures["text"].result() |
|
self.unet = futures["unet"].result() |
|
self.unet_neg = futures["unet_neg"].result() if futures["unet_neg"] else self.unet |
|
self.vae_decoder = futures["vae_decoder"].result() |
|
self.vae_encoder = futures["vae_encoder"].result() |
|
print("Text Device:", device[0]) |
|
print("unet Device:", device[1]) |
|
print("unet-neg Device:", device[2]) |
|
print("VAE Device:", device[3]) |
|
|
|
self._text_encoder_output = self.text_encoder.output(0) |
|
self._vae_d_output = self.vae_decoder.output(0) |
|
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None |
|
|
|
self.set_dimensions() |
|
self.infer_request_neg = self.unet_neg.create_infer_request() |
|
self.infer_request = self.unet.create_infer_request() |
|
self.infer_request_time_proj = self.unet_time_proj.create_infer_request() |
|
self.time_proj_constants = np.load(os.path.join(model, "time_proj_constants.npy")) |
|
|
|
def load_model(self, model, model_name, device): |
|
if "NPU" in device: |
|
with open(os.path.join(model, f"{model_name}.blob"), "rb") as f: |
|
return self.core.import_model(f.read(), device) |
|
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device) |
|
|
|
def set_dimensions(self): |
|
latent_shape = self.unet.input("latent_model_input").shape |
|
if latent_shape[1] == 4: |
|
self.height = latent_shape[2] * 8 |
|
self.width = latent_shape[3] * 8 |
|
else: |
|
self.height = latent_shape[1] * 8 |
|
self.width = latent_shape[2] * 8 |
|
|
|
def __call__( |
|
self, |
|
prompt, |
|
init_image = None, |
|
negative_prompt=None, |
|
scheduler=None, |
|
strength = 0.5, |
|
num_inference_steps = 32, |
|
guidance_scale = 7.5, |
|
eta = 0.0, |
|
create_gif = False, |
|
model = None, |
|
callback = None, |
|
callback_userdata = None |
|
): |
|
|
|
|
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output] |
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
if do_classifier_free_guidance: |
|
|
|
if negative_prompt is None: |
|
uncond_tokens = [""] |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
tokens_uncond = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="np" |
|
) |
|
uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output] |
|
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
extra_set_kwargs = {} |
|
|
|
if accepts_offset: |
|
extra_set_kwargs["offset"] = 1 |
|
|
|
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) |
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler) |
|
latent_timestep = timesteps[:1] |
|
|
|
|
|
latents, meta = self.prepare_latents(init_image, latent_timestep, scheduler) |
|
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
if create_gif: |
|
frames = [] |
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
if callback: |
|
callback(i, callback_userdata) |
|
|
|
|
|
noise_pred = [] |
|
latent_model_input = latents |
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
|
|
latent_model_input_neg = latent_model_input |
|
if self.unet.input("latent_model_input").shape[1] != 4: |
|
|
|
try: |
|
latent_model_input = latent_model_input.permute(0,2,3,1) |
|
except: |
|
latent_model_input = latent_model_input.transpose(0,2,3,1) |
|
|
|
if self.unet_neg.input("latent_model_input").shape[1] != 4: |
|
|
|
try: |
|
latent_model_input_neg = latent_model_input_neg.permute(0,2,3,1) |
|
except: |
|
latent_model_input_neg = latent_model_input_neg.transpose(0,2,3,1) |
|
|
|
|
|
time_proj_constants_fp16 = np.float16(self.time_proj_constants) |
|
t_scaled_fp16 = time_proj_constants_fp16 * np.float16(t) |
|
cosine_t_fp16 = np.cos(t_scaled_fp16) |
|
sine_t_fp16 = np.sin(t_scaled_fp16) |
|
|
|
t_scaled = self.time_proj_constants * np.float32(t) |
|
|
|
cosine_t = np.cos(t_scaled) |
|
sine_t = np.sin(t_scaled) |
|
|
|
time_proj_dict = {"sine_t" : np.float32(sine_t), "cosine_t" : np.float32(cosine_t)} |
|
self.infer_request_time_proj.start_async(time_proj_dict) |
|
self.infer_request_time_proj.wait() |
|
time_proj = self.infer_request_time_proj.get_output_tensor(0).data.astype(np.float32) |
|
|
|
input_tens_neg_dict = {"time_proj": np.float32(time_proj), "latent_model_input":latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0)} |
|
input_tens_dict = {"time_proj": np.float32(time_proj), "latent_model_input":latent_model_input, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0)} |
|
|
|
self.infer_request_neg.start_async(input_tens_neg_dict) |
|
self.infer_request.start_async(input_tens_dict) |
|
self.infer_request_neg.wait() |
|
self.infer_request.wait() |
|
|
|
noise_pred_neg = self.infer_request_neg.get_output_tensor(0) |
|
noise_pred_pos = self.infer_request.get_output_tensor(0) |
|
|
|
noise_pred.append(noise_pred_neg.data.astype(np.float32)) |
|
noise_pred.append(noise_pred_pos.data.astype(np.float32)) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1] |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy() |
|
|
|
if create_gif: |
|
frames.append(latents) |
|
|
|
if callback: |
|
callback(num_inference_steps, callback_userdata) |
|
|
|
|
|
latents = 1 / 0.18215 * latents |
|
|
|
start = time.time() |
|
image = self.vae_decoder(latents)[self._vae_d_output] |
|
print("Decoder ended:",time.time() - start) |
|
|
|
image = self.postprocess_image(image, meta) |
|
|
|
if create_gif: |
|
gif_folder=os.path.join(model,"../../../gif") |
|
print("gif_folder:",gif_folder) |
|
if not os.path.exists(gif_folder): |
|
os.makedirs(gif_folder) |
|
for i in range(0,len(frames)): |
|
image = self.vae_decoder(frames[i]*(1/0.18215))[self._vae_d_output] |
|
image = self.postprocess_image(image, meta) |
|
output = gif_folder + "/" + str(i).zfill(3) +".png" |
|
cv2.imwrite(output, image) |
|
with open(os.path.join(gif_folder, "prompt.json"), "w") as file: |
|
json.dump({"prompt": prompt}, file) |
|
frames_image = [Image.open(image) for image in glob.glob(f"{gif_folder}/*.png")] |
|
frame_one = frames_image[0] |
|
gif_file=os.path.join(gif_folder,"stable_diffusion.gif") |
|
frame_one.save(gif_file, format="GIF", append_images=frames_image, save_all=True, duration=100, loop=0) |
|
|
|
return image |
|
|
|
def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None, scheduler = LMSDiscreteScheduler): |
|
""" |
|
Function for getting initial latents for starting generation |
|
|
|
Parameters: |
|
image (PIL.Image.Image, *optional*, None): |
|
Input image for generation, if not provided randon noise will be used as starting point |
|
latent_timestep (torch.Tensor, *optional*, None): |
|
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie |
|
Returns: |
|
latents (np.ndarray): |
|
Image encoded in latent space |
|
""" |
|
latents_shape = (1, 4, self.height // 8, self.width // 8) |
|
|
|
noise = np.random.randn(*latents_shape).astype(np.float32) |
|
if image is None: |
|
|
|
|
|
if isinstance(scheduler, LMSDiscreteScheduler): |
|
|
|
noise = noise * scheduler.sigmas[0].numpy() |
|
return noise, {} |
|
elif isinstance(scheduler, EulerDiscreteScheduler) or isinstance(scheduler,EulerAncestralDiscreteScheduler): |
|
|
|
noise = noise * scheduler.sigmas.max().numpy() |
|
return noise, {} |
|
else: |
|
return noise, {} |
|
input_image, meta = preprocess(image,self.height,self.width) |
|
|
|
moments = self.vae_encoder(input_image)[self._vae_e_output] |
|
|
|
mean, logvar = np.split(moments, 2, axis=1) |
|
|
|
std = np.exp(logvar * 0.5) |
|
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215 |
|
|
|
|
|
latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy() |
|
return latents, meta |
|
|
|
def postprocess_image(self, image:np.ndarray, meta:Dict): |
|
""" |
|
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initial image size (if required), |
|
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format |
|
|
|
Parameters: |
|
image (np.ndarray): |
|
Generated image |
|
meta (Dict): |
|
Metadata obtained on latents preparing step, can be empty |
|
output_type (str, *optional*, pil): |
|
Output format for result, can be pil or numpy |
|
Returns: |
|
image (List of np.ndarray or PIL.Image.Image): |
|
Postprocessed images |
|
|
|
if "src_height" in meta: |
|
orig_height, orig_width = meta["src_height"], meta["src_width"] |
|
image = [cv2.resize(img, (orig_width, orig_height)) |
|
for img in image] |
|
|
|
return image |
|
""" |
|
if "padding" in meta: |
|
pad = meta["padding"] |
|
(_, end_h), (_, end_w) = pad[1:3] |
|
h, w = image.shape[2:] |
|
|
|
unpad_h = h - end_h |
|
unpad_w = w - end_w |
|
image = image[:, :, :unpad_h, :unpad_w] |
|
image = np.clip(image / 2 + 0.5, 0, 1) |
|
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8) |
|
|
|
|
|
|
|
if "src_height" in meta: |
|
orig_height, orig_width = meta["src_height"], meta["src_width"] |
|
image = cv2.resize(image, (orig_width, orig_height)) |
|
|
|
return image |
|
|
|
|
|
|
|
|
|
def get_timesteps(self, num_inference_steps:int, strength:float, scheduler): |
|
""" |
|
Helper function for getting scheduler timesteps for generation |
|
In case of image-to-image generation, it updates number of steps according to strength |
|
|
|
Parameters: |
|
num_inference_steps (int): |
|
number of inference steps for generation |
|
strength (float): |
|
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. |
|
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. |
|
""" |
|
|
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
class StableDiffusionEngine(DiffusionPipeline): |
|
def __init__( |
|
self, |
|
model="bes-dev/stable-diffusion-v1-4-openvino", |
|
tokenizer="openai/clip-vit-large-patch14", |
|
device=["CPU","CPU","CPU","CPU"]): |
|
|
|
self.core = Core() |
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) |
|
|
|
self.batch_size = 2 if device[1] == device[2] and device[1] == "GPU" else 1 |
|
try_enable_npu_turbo(device, self.core) |
|
|
|
try: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True) |
|
except Exception as e: |
|
print("Local tokenizer not found. Attempting to download...") |
|
self.tokenizer = self.download_tokenizer(tokenizer, model) |
|
|
|
print("Loading models... ") |
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor: |
|
text_future = executor.submit(self.load_model, model, "text_encoder", device[0]) |
|
vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[3]) |
|
vae_en_future = executor.submit(self.load_model, model, "vae_encoder", device[3]) |
|
|
|
if self.batch_size == 1: |
|
if "int8" not in model: |
|
unet_future = executor.submit(self.load_model, model, "unet_bs1", device[1]) |
|
unet_neg_future = executor.submit(self.load_model, model, "unet_bs1", device[2]) if device[1] != device[2] else None |
|
else: |
|
unet_future = executor.submit(self.load_model, model, "unet_int8a16", device[1]) |
|
unet_neg_future = executor.submit(self.load_model, model, "unet_int8a16", device[2]) if device[1] != device[2] else None |
|
else: |
|
unet_future = executor.submit(self.load_model, model, "unet", device[1]) |
|
unet_neg_future = None |
|
|
|
self.unet = unet_future.result() |
|
self.unet_neg = unet_neg_future.result() if unet_neg_future else self.unet |
|
self.text_encoder = text_future.result() |
|
self.vae_decoder = vae_de_future.result() |
|
self.vae_encoder = vae_en_future.result() |
|
print("Text Device:", device[0]) |
|
print("unet Device:", device[1]) |
|
print("unet-neg Device:", device[2]) |
|
print("VAE Device:", device[3]) |
|
|
|
self._text_encoder_output = self.text_encoder.output(0) |
|
self._unet_output = self.unet.output(0) |
|
self._vae_d_output = self.vae_decoder.output(0) |
|
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None |
|
|
|
self.unet_input_tensor_name = "sample" if 'sample' in self.unet.input(0).names else "latent_model_input" |
|
|
|
if self.batch_size == 1: |
|
self.infer_request = self.unet.create_infer_request() |
|
self.infer_request_neg = self.unet_neg.create_infer_request() |
|
self._unet_neg_output = self.unet_neg.output(0) |
|
else: |
|
self.infer_request = None |
|
self.infer_request_neg = None |
|
self._unet_neg_output = None |
|
|
|
self.set_dimensions() |
|
|
|
|
|
|
|
def load_model(self, model, model_name, device): |
|
if "NPU" in device: |
|
with open(os.path.join(model, f"{model_name}.blob"), "rb") as f: |
|
return self.core.import_model(f.read(), device) |
|
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device) |
|
|
|
def set_dimensions(self): |
|
latent_shape = self.unet.input(self.unet_input_tensor_name).shape |
|
if latent_shape[1] == 4: |
|
self.height = latent_shape[2] * 8 |
|
self.width = latent_shape[3] * 8 |
|
else: |
|
self.height = latent_shape[1] * 8 |
|
self.width = latent_shape[2] * 8 |
|
|
|
def __call__( |
|
self, |
|
prompt, |
|
init_image=None, |
|
negative_prompt=None, |
|
scheduler=None, |
|
strength=0.5, |
|
num_inference_steps=32, |
|
guidance_scale=7.5, |
|
eta=0.0, |
|
create_gif=False, |
|
model=None, |
|
callback=None, |
|
callback_userdata=None |
|
): |
|
|
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output] |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
if do_classifier_free_guidance: |
|
if negative_prompt is None: |
|
uncond_tokens = [""] |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
tokens_uncond = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="np" |
|
) |
|
uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output] |
|
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
extra_set_kwargs = {} |
|
|
|
if accepts_offset: |
|
extra_set_kwargs["offset"] = 1 |
|
|
|
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) |
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler) |
|
latent_timestep = timesteps[:1] |
|
|
|
|
|
latents, meta = self.prepare_latents(init_image, latent_timestep, scheduler,model) |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
if create_gif: |
|
frames = [] |
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
if callback: |
|
callback(i, callback_userdata) |
|
|
|
if self.batch_size == 1: |
|
|
|
noise_pred = [] |
|
latent_model_input = latents |
|
|
|
|
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
latent_model_input_pos = latent_model_input |
|
latent_model_input_neg = latent_model_input |
|
|
|
if self.unet.input(self.unet_input_tensor_name).shape[1] != 4: |
|
try: |
|
latent_model_input_pos = latent_model_input_pos.permute(0,2,3,1) |
|
except: |
|
latent_model_input_pos = latent_model_input_pos.transpose(0,2,3,1) |
|
|
|
if self.unet_neg.input(self.unet_input_tensor_name).shape[1] != 4: |
|
try: |
|
latent_model_input_neg = latent_model_input_neg.permute(0,2,3,1) |
|
except: |
|
latent_model_input_neg = latent_model_input_neg.transpose(0,2,3,1) |
|
|
|
if "sample" in self.unet_input_tensor_name: |
|
input_tens_neg_dict = {"sample" : latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0), "timestep": np.expand_dims(np.float32(t), axis=0)} |
|
input_tens_pos_dict = {"sample" : latent_model_input_pos, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0), "timestep": np.expand_dims(np.float32(t), axis=0)} |
|
else: |
|
input_tens_neg_dict = {"latent_model_input" : latent_model_input_neg, "encoder_hidden_states": np.expand_dims(text_embeddings[0], axis=0), "t": np.expand_dims(np.float32(t), axis=0)} |
|
input_tens_pos_dict = {"latent_model_input" : latent_model_input_pos, "encoder_hidden_states": np.expand_dims(text_embeddings[1], axis=0), "t": np.expand_dims(np.float32(t), axis=0)} |
|
|
|
self.infer_request_neg.start_async(input_tens_neg_dict) |
|
self.infer_request.start_async(input_tens_pos_dict) |
|
|
|
self.infer_request_neg.wait() |
|
self.infer_request.wait() |
|
|
|
noise_pred_neg = self.infer_request_neg.get_output_tensor(0) |
|
noise_pred_pos = self.infer_request.get_output_tensor(0) |
|
|
|
noise_pred.append(noise_pred_neg.data.astype(np.float32)) |
|
noise_pred.append(noise_pred_pos.data.astype(np.float32)) |
|
else: |
|
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
noise_pred = self.unet([latent_model_input, np.array(t, dtype=np.float32), text_embeddings])[self._unet_output] |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1] |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy() |
|
|
|
if create_gif: |
|
frames.append(latents) |
|
|
|
if callback: |
|
callback(num_inference_steps, callback_userdata) |
|
|
|
|
|
|
|
latents = 1 / 0.18215 * latents |
|
image = self.vae_decoder(latents)[self._vae_d_output] |
|
image = self.postprocess_image(image, meta) |
|
|
|
return image |
|
|
|
def prepare_latents(self, image: PIL.Image.Image = None, latent_timestep: torch.Tensor = None, |
|
scheduler=LMSDiscreteScheduler,model=None): |
|
""" |
|
Function for getting initial latents for starting generation |
|
|
|
Parameters: |
|
image (PIL.Image.Image, *optional*, None): |
|
Input image for generation, if not provided randon noise will be used as starting point |
|
latent_timestep (torch.Tensor, *optional*, None): |
|
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie |
|
Returns: |
|
latents (np.ndarray): |
|
Image encoded in latent space |
|
""" |
|
latents_shape = (1, 4, self.height // 8, self.width // 8) |
|
|
|
noise = np.random.randn(*latents_shape).astype(np.float32) |
|
if image is None: |
|
|
|
|
|
if isinstance(scheduler, LMSDiscreteScheduler): |
|
|
|
noise = noise * scheduler.sigmas[0].numpy() |
|
return noise, {} |
|
elif isinstance(scheduler, EulerDiscreteScheduler): |
|
|
|
noise = noise * scheduler.sigmas.max().numpy() |
|
return noise, {} |
|
else: |
|
return noise, {} |
|
input_image, meta = preprocess(image, self.height, self.width) |
|
|
|
moments = self.vae_encoder(input_image)[self._vae_e_output] |
|
|
|
if "sd_2.1" in model: |
|
latents = moments * 0.18215 |
|
|
|
else: |
|
|
|
mean, logvar = np.split(moments, 2, axis=1) |
|
|
|
std = np.exp(logvar * 0.5) |
|
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215 |
|
|
|
latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy() |
|
return latents, meta |
|
|
|
|
|
def postprocess_image(self, image: np.ndarray, meta: Dict): |
|
""" |
|
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required), |
|
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format |
|
|
|
Parameters: |
|
image (np.ndarray): |
|
Generated image |
|
meta (Dict): |
|
Metadata obtained on latents preparing step, can be empty |
|
output_type (str, *optional*, pil): |
|
Output format for result, can be pil or numpy |
|
Returns: |
|
image (List of np.ndarray or PIL.Image.Image): |
|
Postprocessed images |
|
|
|
if "src_height" in meta: |
|
orig_height, orig_width = meta["src_height"], meta["src_width"] |
|
image = [cv2.resize(img, (orig_width, orig_height)) |
|
for img in image] |
|
|
|
return image |
|
""" |
|
if "padding" in meta: |
|
pad = meta["padding"] |
|
(_, end_h), (_, end_w) = pad[1:3] |
|
h, w = image.shape[2:] |
|
|
|
unpad_h = h - end_h |
|
unpad_w = w - end_w |
|
image = image[:, :, :unpad_h, :unpad_w] |
|
image = np.clip(image / 2 + 0.5, 0, 1) |
|
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8) |
|
|
|
if "src_height" in meta: |
|
orig_height, orig_width = meta["src_height"], meta["src_width"] |
|
image = cv2.resize(image, (orig_width, orig_height)) |
|
|
|
return image |
|
|
|
|
|
|
|
|
|
def get_timesteps(self, num_inference_steps: int, strength: float, scheduler): |
|
""" |
|
Helper function for getting scheduler timesteps for generation |
|
In case of image-to-image generation, it updates number of steps according to strength |
|
|
|
Parameters: |
|
num_inference_steps (int): |
|
number of inference steps for generation |
|
strength (float): |
|
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. |
|
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. |
|
""" |
|
|
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
class LatentConsistencyEngine(DiffusionPipeline): |
|
def __init__( |
|
self, |
|
model="SimianLuo/LCM_Dreamshaper_v7", |
|
tokenizer="openai/clip-vit-large-patch14", |
|
device=["CPU", "CPU", "CPU"], |
|
): |
|
super().__init__() |
|
try: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True) |
|
except: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) |
|
self.tokenizer.save_pretrained(model) |
|
|
|
self.core = Core() |
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) |
|
try_enable_npu_turbo(device, self.core) |
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor: |
|
text_future = executor.submit(self.load_model, model, "text_encoder", device[0]) |
|
unet_future = executor.submit(self.load_model, model, "unet", device[1]) |
|
vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[2]) |
|
|
|
print("Text Device:", device[0]) |
|
self.text_encoder = text_future.result() |
|
self._text_encoder_output = self.text_encoder.output(0) |
|
|
|
print("Unet Device:", device[1]) |
|
self.unet = unet_future.result() |
|
self._unet_output = self.unet.output(0) |
|
self.infer_request = self.unet.create_infer_request() |
|
|
|
print(f"VAE Device: {device[2]}") |
|
self.vae_decoder = vae_de_future.result() |
|
self.infer_request_vae = self.vae_decoder.create_infer_request() |
|
self.safety_checker = None |
|
self.feature_extractor = None |
|
self.vae_scale_factor = 2 ** 3 |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
def load_model(self, model, model_name, device): |
|
if "NPU" in device: |
|
with open(os.path.join(model, f"{model_name}.blob"), "rb") as f: |
|
return self.core.import_model(f.read(), device) |
|
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device) |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
num_images_per_prompt, |
|
prompt_embeds: None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
""" |
|
|
|
if prompt_embeds is None: |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer( |
|
prompt, padding="longest", return_tensors="pt" |
|
).input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[ |
|
-1 |
|
] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True) |
|
prompt_embeds = torch.from_numpy(prompt_embeds[0]) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
return prompt_embeds |
|
|
|
def run_safety_checker(self, image, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess( |
|
image, output_type="pil" |
|
) |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor( |
|
feature_extractor_input, return_tensors="pt" |
|
) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
def prepare_latents( |
|
self, batch_size, num_channels_latents, height, width, dtype, latents=None |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if latents is None: |
|
latents = torch.randn(shape, dtype=dtype) |
|
|
|
return latents |
|
|
|
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
Args: |
|
timesteps: torch.Tensor: generate embedding vectors at these timesteps |
|
embedding_dim: int: dimension of the embeddings to generate |
|
dtype: data type of the generated embeddings |
|
Returns: |
|
embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = 512, |
|
width: Optional[int] = 512, |
|
guidance_scale: float = 7.5, |
|
scheduler = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
latents: Optional[torch.FloatTensor] = None, |
|
num_inference_steps: int = 4, |
|
lcm_origin_steps: int = 50, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
model: Optional[Dict[str, any]] = None, |
|
seed: Optional[int] = 1234567, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback = None, |
|
callback_userdata = None |
|
): |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if seed is not None: |
|
torch.manual_seed(seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
num_images_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
) |
|
|
|
|
|
|
|
scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps) |
|
timesteps = scheduler.timesteps |
|
|
|
|
|
|
|
|
|
num_channels_latents = 4 |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
latents, |
|
) |
|
latents = latents * scheduler.init_noise_sigma |
|
|
|
|
|
bs = batch_size * num_images_per_prompt |
|
|
|
|
|
w = torch.tensor(guidance_scale).repeat(bs) |
|
w_embedding = self.get_w_embedding(w, embedding_dim=256) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if callback: |
|
callback(i+1, callback_userdata) |
|
|
|
ts = torch.full((bs,), t, dtype=torch.long) |
|
|
|
|
|
model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0] |
|
|
|
|
|
latents, denoised = scheduler.step( |
|
torch.from_numpy(model_pred), t, latents, return_dict=False |
|
) |
|
progress_bar.update() |
|
|
|
|
|
|
|
vae_start = time.time() |
|
|
|
if not output_type == "latent": |
|
image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0]) |
|
else: |
|
image = denoised |
|
|
|
print("Decoder Ended: ", time.time() - vae_start) |
|
|
|
|
|
|
|
do_denormalize = [True] * image.shape[0] |
|
|
|
|
|
|
|
|
|
|
|
image = self.image_processor.postprocess( |
|
image, output_type=output_type, do_denormalize=do_denormalize |
|
) |
|
|
|
return image[0] |
|
|
|
class LatentConsistencyEngineAdvanced(DiffusionPipeline): |
|
def __init__( |
|
self, |
|
model="SimianLuo/LCM_Dreamshaper_v7", |
|
tokenizer="openai/clip-vit-large-patch14", |
|
device=["CPU", "CPU", "CPU"], |
|
): |
|
super().__init__() |
|
try: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(model, local_files_only=True) |
|
except: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) |
|
self.tokenizer.save_pretrained(model) |
|
|
|
self.core = Core() |
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) |
|
|
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor: |
|
text_future = executor.submit(self.load_model, model, "text_encoder", device[0]) |
|
unet_future = executor.submit(self.load_model, model, "unet", device[1]) |
|
vae_de_future = executor.submit(self.load_model, model, "vae_decoder", device[2]) |
|
vae_encoder_future = executor.submit(self.load_model, model, "vae_encoder", device[2]) |
|
|
|
|
|
print("Text Device:", device[0]) |
|
self.text_encoder = text_future.result() |
|
self._text_encoder_output = self.text_encoder.output(0) |
|
|
|
print("Unet Device:", device[1]) |
|
self.unet = unet_future.result() |
|
self._unet_output = self.unet.output(0) |
|
self.infer_request = self.unet.create_infer_request() |
|
|
|
print(f"VAE Device: {device[2]}") |
|
self.vae_decoder = vae_de_future.result() |
|
self.vae_encoder = vae_encoder_future.result() |
|
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder else None |
|
|
|
self.infer_request_vae = self.vae_decoder.create_infer_request() |
|
self.safety_checker = None |
|
self.feature_extractor = None |
|
self.vae_scale_factor = 2 ** 3 |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
def load_model(self, model, model_name, device): |
|
print(f"Compiling the {model_name} to {device} ...") |
|
return self.core.compile_model(os.path.join(model, f"{model_name}.xml"), device) |
|
|
|
def get_timesteps(self, num_inference_steps:int, strength:float, scheduler): |
|
""" |
|
Helper function for getting scheduler timesteps for generation |
|
In case of image-to-image generation, it updates number of steps according to strength |
|
|
|
Parameters: |
|
num_inference_steps (int): |
|
number of inference steps for generation |
|
strength (float): |
|
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. |
|
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. |
|
""" |
|
|
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
num_images_per_prompt, |
|
prompt_embeds: None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
""" |
|
|
|
if prompt_embeds is None: |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer( |
|
prompt, padding="longest", return_tensors="pt" |
|
).input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[ |
|
-1 |
|
] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder(text_input_ids, share_inputs=True, share_outputs=True) |
|
prompt_embeds = torch.from_numpy(prompt_embeds[0]) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view( |
|
bs_embed * num_images_per_prompt, seq_len, -1 |
|
) |
|
|
|
|
|
return prompt_embeds |
|
|
|
def run_safety_checker(self, image, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess( |
|
image, output_type="pil" |
|
) |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor( |
|
feature_extractor_input, return_tensors="pt" |
|
) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concep |
|
|
|
def prepare_latents( |
|
self,image,timestep,batch_size, num_channels_latents, height, width, dtype, scheduler,latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if image: |
|
|
|
|
|
latents_shape = (1, 4, 512 // 8, 512 // 8) |
|
noise = np.random.randn(*latents_shape).astype(np.float32) |
|
input_image,meta = preprocess(image,512,512) |
|
moments = self.vae_encoder(input_image)[self._vae_e_output] |
|
mean, logvar = np.split(moments, 2, axis=1) |
|
std = np.exp(logvar * 0.5) |
|
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215 |
|
noise = torch.randn(shape, dtype=dtype) |
|
|
|
latents = scheduler.add_noise(torch.from_numpy(latents), noise, timestep) |
|
|
|
else: |
|
latents = torch.randn(shape, dtype=dtype) |
|
|
|
return latents |
|
|
|
def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
Args: |
|
timesteps: torch.Tensor: generate embedding vectors at these timesteps |
|
embedding_dim: int: dimension of the embeddings to generate |
|
dtype: data type of the generated embeddings |
|
Returns: |
|
embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
init_image: Optional[PIL.Image.Image] = None, |
|
strength: Optional[float] = 0.8, |
|
height: Optional[int] = 512, |
|
width: Optional[int] = 512, |
|
guidance_scale: float = 7.5, |
|
scheduler = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
latents: Optional[torch.FloatTensor] = None, |
|
num_inference_steps: int = 4, |
|
lcm_origin_steps: int = 50, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
model: Optional[Dict[str, any]] = None, |
|
seed: Optional[int] = 1234567, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback = None, |
|
callback_userdata = None |
|
): |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if seed is not None: |
|
torch.manual_seed(seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
num_images_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
) |
|
|
|
|
|
|
|
|
|
latent_timestep = None |
|
if init_image: |
|
scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler) |
|
latent_timestep = timesteps[:1] |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, original_inference_steps=lcm_origin_steps) |
|
timesteps = scheduler.timesteps |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_channels_latents = 4 |
|
latents = self.prepare_latents( |
|
init_image, |
|
latent_timestep, |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
scheduler, |
|
latents, |
|
) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
|
|
|
|
bs = batch_size * num_images_per_prompt |
|
|
|
|
|
w = torch.tensor(guidance_scale).repeat(bs) |
|
w_embedding = self.get_w_embedding(w, embedding_dim=256) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if callback: |
|
callback(i+1, callback_userdata) |
|
|
|
ts = torch.full((bs,), t, dtype=torch.long) |
|
|
|
|
|
model_pred = self.unet([latents, ts, prompt_embeds, w_embedding],share_inputs=True, share_outputs=True)[0] |
|
|
|
|
|
latents, denoised = scheduler.step( |
|
torch.from_numpy(model_pred), t, latents, return_dict=False |
|
) |
|
progress_bar.update() |
|
|
|
|
|
|
|
vae_start = time.time() |
|
|
|
if not output_type == "latent": |
|
image = torch.from_numpy(self.vae_decoder(denoised / 0.18215, share_inputs=True, share_outputs=True)[0]) |
|
else: |
|
image = denoised |
|
|
|
print("Decoder Ended: ", time.time() - vae_start) |
|
|
|
|
|
|
|
do_denormalize = [True] * image.shape[0] |
|
|
|
|
|
|
|
|
|
|
|
image = self.image_processor.postprocess( |
|
image, output_type=output_type, do_denormalize=do_denormalize |
|
) |
|
|
|
return image[0] |
|
|
|
class StableDiffusionEngineReferenceOnly(DiffusionPipeline): |
|
def __init__( |
|
self, |
|
|
|
model="bes-dev/stable-diffusion-v1-4-openvino", |
|
tokenizer="openai/clip-vit-large-patch14", |
|
device=["CPU","CPU","CPU"] |
|
): |
|
|
|
try: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(model,local_files_only=True) |
|
except: |
|
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer) |
|
self.tokenizer.save_pretrained(model) |
|
|
|
|
|
|
|
|
|
self.core = Core() |
|
self.core.set_property({'CACHE_DIR': os.path.join(model, 'cache')}) |
|
|
|
|
|
print("Text Device:",device[0]) |
|
self.text_encoder = self.core.compile_model(os.path.join(model, "text_encoder.xml"), device[0]) |
|
|
|
self._text_encoder_output = self.text_encoder.output(0) |
|
|
|
|
|
print("unet_w Device:",device[1]) |
|
self.unet_w = self.core.compile_model(os.path.join(model, "unet_reference_write.xml"), device[1]) |
|
self._unet_w_output = self.unet_w.output(0) |
|
self.latent_shape = tuple(self.unet_w.inputs[0].shape)[1:] |
|
|
|
print("unet_r Device:",device[1]) |
|
self.unet_r = self.core.compile_model(os.path.join(model, "unet_reference_read.xml"), device[1]) |
|
self._unet_r_output = self.unet_r.output(0) |
|
|
|
print("Vae Device:",device[2]) |
|
|
|
self.vae_decoder = self.core.compile_model(os.path.join(model, "vae_decoder.xml"), device[2]) |
|
|
|
|
|
|
|
self.vae_encoder = self.core.compile_model(os.path.join(model, "vae_encoder.xml"), device[2]) |
|
|
|
self.init_image_shape = tuple(self.vae_encoder.inputs[0].shape)[2:] |
|
|
|
self._vae_d_output = self.vae_decoder.output(0) |
|
self._vae_e_output = self.vae_encoder.output(0) if self.vae_encoder is not None else None |
|
|
|
self.height = self.unet_w.input(0).shape[2] * 8 |
|
self.width = self.unet_w.input(0).shape[3] * 8 |
|
|
|
|
|
|
|
def __call__( |
|
self, |
|
prompt, |
|
image = None, |
|
negative_prompt=None, |
|
scheduler=None, |
|
strength = 1.0, |
|
num_inference_steps = 32, |
|
guidance_scale = 7.5, |
|
eta = 0.0, |
|
create_gif = False, |
|
model = None, |
|
callback = None, |
|
callback_userdata = None |
|
): |
|
|
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="np", |
|
) |
|
text_embeddings = self.text_encoder(text_input.input_ids)[self._text_encoder_output] |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
if do_classifier_free_guidance: |
|
|
|
if negative_prompt is None: |
|
uncond_tokens = [""] |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
tokens_uncond = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="np" |
|
) |
|
uncond_embeddings = self.text_encoder(tokens_uncond.input_ids)[self._text_encoder_output] |
|
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
extra_set_kwargs = {} |
|
|
|
if accepts_offset: |
|
extra_set_kwargs["offset"] = 1 |
|
|
|
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) |
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, scheduler) |
|
latent_timestep = timesteps[:1] |
|
|
|
ref_image = self.prepare_image( |
|
image=image, |
|
width=512, |
|
height=512, |
|
) |
|
|
|
latents, meta = self.prepare_latents(None, latent_timestep, scheduler) |
|
|
|
ref_image_latents = self.ov_prepare_ref_latents(ref_image) |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
if create_gif: |
|
frames = [] |
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
if callback: |
|
callback(i, callback_userdata) |
|
|
|
|
|
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise = randn_tensor( |
|
ref_image_latents.shape |
|
) |
|
|
|
ref_xt = scheduler.add_noise( |
|
torch.from_numpy(ref_image_latents), |
|
noise, |
|
t.reshape( |
|
1, |
|
), |
|
).numpy() |
|
ref_xt = np.concatenate([ref_xt] * 2) if do_classifier_free_guidance else ref_xt |
|
ref_xt = scheduler.scale_model_input(ref_xt, t) |
|
|
|
|
|
result_w_dict = self.unet_w([ |
|
ref_xt, |
|
t, |
|
text_embeddings |
|
]) |
|
down_0_attn0 = result_w_dict["/unet/down_blocks.0/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
down_0_attn1 = result_w_dict["/unet/down_blocks.0/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
down_1_attn0 = result_w_dict["/unet/down_blocks.1/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
down_1_attn1 = result_w_dict["/unet/down_blocks.1/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
down_2_attn0 = result_w_dict["/unet/down_blocks.2/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
down_2_attn1 = result_w_dict["/unet/down_blocks.2/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
mid_attn0 = result_w_dict["/unet/mid_block/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
up_1_attn0 = result_w_dict["/unet/up_blocks.1/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
up_1_attn1 = result_w_dict["/unet/up_blocks.1/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
up_1_attn2 = result_w_dict["/unet/up_blocks.1/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
up_2_attn0 = result_w_dict["/unet/up_blocks.2/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
up_2_attn1 = result_w_dict["/unet/up_blocks.2/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
up_2_attn2 = result_w_dict["/unet/up_blocks.2/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
up_3_attn0 = result_w_dict["/unet/up_blocks.3/attentions.0/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
up_3_attn1 = result_w_dict["/unet/up_blocks.3/attentions.1/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
up_3_attn2 = result_w_dict["/unet/up_blocks.3/attentions.2/transformer_blocks.0/norm1/LayerNormalization_output_0"] |
|
|
|
|
|
noise_pred = self.unet_r([ |
|
latent_model_input, t, text_embeddings, down_0_attn0, down_0_attn1, down_1_attn0, |
|
down_1_attn1, down_2_attn0, down_2_attn1, mid_attn0, up_1_attn0, up_1_attn1, up_1_attn2, |
|
up_2_attn0, up_2_attn1, up_2_attn2, up_3_attn0, up_3_attn1, up_3_attn2 |
|
])[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1] |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = scheduler.step(torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs)["prev_sample"].numpy() |
|
|
|
if create_gif: |
|
frames.append(latents) |
|
|
|
if callback: |
|
callback(num_inference_steps, callback_userdata) |
|
|
|
|
|
|
|
image = self.vae_decoder(latents)[self._vae_d_output] |
|
|
|
image = self.postprocess_image(image, meta) |
|
|
|
if create_gif: |
|
gif_folder=os.path.join(model,"../../../gif") |
|
if not os.path.exists(gif_folder): |
|
os.makedirs(gif_folder) |
|
for i in range(0,len(frames)): |
|
image = self.vae_decoder(frames[i])[self._vae_d_output] |
|
image = self.postprocess_image(image, meta) |
|
output = gif_folder + "/" + str(i).zfill(3) +".png" |
|
cv2.imwrite(output, image) |
|
with open(os.path.join(gif_folder, "prompt.json"), "w") as file: |
|
json.dump({"prompt": prompt}, file) |
|
frames_image = [Image.open(image) for image in glob.glob(f"{gif_folder}/*.png")] |
|
frame_one = frames_image[0] |
|
gif_file=os.path.join(gif_folder,"stable_diffusion.gif") |
|
frame_one.save(gif_file, format="GIF", append_images=frames_image, save_all=True, duration=100, loop=0) |
|
|
|
return image |
|
|
|
def ov_prepare_ref_latents(self, refimage, vae_scaling_factor=0.18215): |
|
|
|
|
|
|
|
moments = self.vae_encoder(refimage)[0] |
|
mean, logvar = np.split(moments, 2, axis=1) |
|
std = np.exp(logvar * 0.5) |
|
ref_image_latents = (mean + std * np.random.randn(*mean.shape)) |
|
ref_image_latents = vae_scaling_factor * ref_image_latents |
|
|
|
|
|
|
|
|
|
return ref_image_latents |
|
|
|
def prepare_latents(self, image:PIL.Image.Image = None, latent_timestep:torch.Tensor = None, scheduler = LMSDiscreteScheduler): |
|
""" |
|
Function for getting initial latents for starting generation |
|
|
|
Parameters: |
|
image (PIL.Image.Image, *optional*, None): |
|
Input image for generation, if not provided randon noise will be used as starting point |
|
latent_timestep (torch.Tensor, *optional*, None): |
|
Predicted by scheduler initial step for image generation, required for latent image mixing with nosie |
|
Returns: |
|
latents (np.ndarray): |
|
Image encoded in latent space |
|
""" |
|
latents_shape = (1, 4, self.height // 8, self.width // 8) |
|
|
|
noise = np.random.randn(*latents_shape).astype(np.float32) |
|
if image is None: |
|
|
|
|
|
if isinstance(scheduler, LMSDiscreteScheduler): |
|
|
|
noise = noise * scheduler.sigmas[0].numpy() |
|
return noise, {} |
|
elif isinstance(scheduler, EulerDiscreteScheduler): |
|
|
|
noise = noise * scheduler.sigmas.max().numpy() |
|
return noise, {} |
|
else: |
|
return noise, {} |
|
input_image, meta = preprocess(image,self.height,self.width) |
|
|
|
moments = self.vae_encoder(input_image)[self._vae_e_output] |
|
|
|
mean, logvar = np.split(moments, 2, axis=1) |
|
|
|
std = np.exp(logvar * 0.5) |
|
latents = (mean + std * np.random.randn(*mean.shape)) * 0.18215 |
|
|
|
|
|
latents = scheduler.add_noise(torch.from_numpy(latents), torch.from_numpy(noise), latent_timestep).numpy() |
|
return latents, meta |
|
|
|
def postprocess_image(self, image:np.ndarray, meta:Dict): |
|
""" |
|
Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initila image size (if required), |
|
normalize and convert to [0, 255] pixels range. Optionally, convertes it from np.ndarray to PIL.Image format |
|
|
|
Parameters: |
|
image (np.ndarray): |
|
Generated image |
|
meta (Dict): |
|
Metadata obtained on latents preparing step, can be empty |
|
output_type (str, *optional*, pil): |
|
Output format for result, can be pil or numpy |
|
Returns: |
|
image (List of np.ndarray or PIL.Image.Image): |
|
Postprocessed images |
|
|
|
if "src_height" in meta: |
|
orig_height, orig_width = meta["src_height"], meta["src_width"] |
|
image = [cv2.resize(img, (orig_width, orig_height)) |
|
for img in image] |
|
|
|
return image |
|
""" |
|
if "padding" in meta: |
|
pad = meta["padding"] |
|
(_, end_h), (_, end_w) = pad[1:3] |
|
h, w = image.shape[2:] |
|
|
|
unpad_h = h - end_h |
|
unpad_w = w - end_w |
|
image = image[:, :, :unpad_h, :unpad_w] |
|
image = np.clip(image / 2 + 0.5, 0, 1) |
|
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8) |
|
|
|
|
|
|
|
if "src_height" in meta: |
|
orig_height, orig_width = meta["src_height"], meta["src_width"] |
|
image = cv2.resize(image, (orig_width, orig_height)) |
|
|
|
return image |
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_timesteps(self, num_inference_steps:int, strength:float, scheduler): |
|
""" |
|
Helper function for getting scheduler timesteps for generation |
|
In case of image-to-image generation, it updates number of steps according to strength |
|
|
|
Parameters: |
|
num_inference_steps (int): |
|
number of inference steps for generation |
|
strength (float): |
|
value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. |
|
Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. |
|
""" |
|
|
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
def prepare_image( |
|
self, |
|
image, |
|
width, |
|
height, |
|
do_classifier_free_guidance=False, |
|
guess_mode=False, |
|
): |
|
if not isinstance(image, np.ndarray): |
|
if isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
images = [] |
|
|
|
for image_ in image: |
|
image_ = image_.convert("RGB") |
|
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) |
|
image_ = np.array(image_) |
|
image_ = image_[None, :] |
|
images.append(image_) |
|
|
|
image = images |
|
|
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = (image - 0.5) / 0.5 |
|
image = image.transpose(0, 3, 1, 2) |
|
elif isinstance(image[0], np.ndarray): |
|
image = np.concatenate(image, dim=0) |
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
image = np.concatenate([image] * 2) |
|
|
|
return image |
|
|
|
def print_npu_turbo_art(): |
|
random_number = random.randint(1, 3) |
|
|
|
if random_number == 1: |
|
print(" ") |
|
print(" ___ ___ ___ ___ ___ ___ ") |
|
print(" /\ \ /\ \ /\ \ /\ \ /\ \ _____ /\ \ ") |
|
print(" \:\ \ /::\ \ \:\ \ ___ \:\ \ /::\ \ /::\ \ /::\ \ ") |
|
print(" \:\ \ /:/\:\__\ \:\ \ /\__\ \:\ \ /:/\:\__\ /:/\:\ \ /:/\:\ \ ") |
|
print(" _____\:\ \ /:/ /:/ / ___ \:\ \ /:/ / ___ \:\ \ /:/ /:/ / /:/ /::\__\ /:/ \:\ \ ") |
|
print(" /::::::::\__\ /:/_/:/ / /\ \ \:\__\ /:/__/ /\ \ \:\__\ /:/_/:/__/___ /:/_/:/\:|__| /:/__/ \:\__\ ") |
|
print(" \:\~~\~~\/__/ \:\/:/ / \:\ \ /:/ / /::\ \ \:\ \ /:/ / \:\/:::::/ / \:\/:/ /:/ / \:\ \ /:/ / ") |
|
print(" \:\ \ \::/__/ \:\ /:/ / /:/\:\ \ \:\ /:/ / \::/~~/~~~~ \::/_/:/ / \:\ /:/ / ") |
|
print(" \:\ \ \:\ \ \:\/:/ / \/__\:\ \ \:\/:/ / \:\~~\ \:\/:/ / \:\/:/ / ") |
|
print(" \:\__\ \:\__\ \::/ / \:\__\ \::/ / \:\__\ \::/ / \::/ / ") |
|
print(" \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ \/__/ ") |
|
print(" ") |
|
elif random_number == 2: |
|
print(" _ _ ____ _ _ _____ _ _ ____ ____ ___ ") |
|
print("| \ | | | _ \ | | | | |_ _| | | | | | _ \ | __ ) / _ \ ") |
|
print("| \| | | |_) | | | | | | | | | | | | |_) | | _ \ | | | |") |
|
print("| |\ | | __/ | |_| | | | | |_| | | _ < | |_) | | |_| |") |
|
print("|_| \_| |_| \___/ |_| \___/ |_| \_\ |____/ \___/ ") |
|
print(" ") |
|
else: |
|
print("") |
|
print(" ) ( ( ) ") |
|
print(" ( /( )\ ) * ) )\ ) ( ( /( ") |
|
print(" )\()) (()/( ( ` ) /( ( (()/( ( )\ )\()) ") |
|
print("((_)\ /(_)) )\ ( )(_)) )\ /(_)) )((_) ((_)\ ") |
|
print(" _((_) (_)) _ ((_) (_(_()) _ ((_) (_)) ((_)_ ((_) ") |
|
print("| \| | | _ \ | | | | |_ _| | | | | | _ \ | _ ) / _ \ ") |
|
print("| .` | | _/ | |_| | | | | |_| | | / | _ \ | (_) | ") |
|
print("|_|\_| |_| \___/ |_| \___/ |_|_\ |___/ \___/ ") |
|
print(" ") |
|
|
|
|
|
|
|
|