import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor from huggingface_hub import login import os import torch HF_TOKEN = os.environ.get("HF_TOKEN") login(token=HF_TOKEN) MODEL_ID = "Qwen/Qwen-VL-Chat-Int4" processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN) model = AutoModelForCausalLM.from_pretrained(MODEL_ID, trust_remote_code=True, device_map="auto", token=HF_TOKEN) model.eval() def ask(image, prompt): inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512) response = processor.batch_decode(outputs, skip_special_tokens=True)[0] return response demo = gr.Interface( fn=ask, inputs=[gr.Image(type="pil"), gr.Textbox(label="請輸入問題")], outputs="text", title="🧠 Qwen1.5-VL 圖文問答 Demo" ) if __name__ == "__main__": demo.launch()