|
|
|
|
|
""" |
|
@Time : 2023/8/7 |
|
@Author : mashenquan |
|
@File : assistant.py |
|
@Desc : I am attempting to incorporate certain symbol concepts from UML into MetaGPT, enabling it to have the |
|
ability to freely construct flows through symbol concatenation. Simultaneously, I am also striving to |
|
make these symbols configurable and standardized, making the process of building flows more convenient. |
|
For more about `fork` node in activity diagrams, see: `https://www.uml-diagrams.org/activity-diagrams.html` |
|
This file defines a `fork` style meta role capable of generating arbitrary roles at runtime based on a |
|
configuration file. |
|
@Modified By: mashenquan, 2023/8/22. A definition has been provided for the return value of _think: returning false |
|
indicates that further reasoning cannot continue. |
|
|
|
""" |
|
from enum import Enum |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
from pydantic import Field |
|
|
|
from metagpt.actions.skill_action import ArgumentsParingAction, SkillAction |
|
from metagpt.actions.talk_action import TalkAction |
|
from metagpt.learn.skill_loader import SkillsDeclaration |
|
from metagpt.logs import logger |
|
from metagpt.memory.brain_memory import BrainMemory |
|
from metagpt.roles import Role |
|
from metagpt.schema import Message |
|
|
|
|
|
class MessageType(Enum): |
|
Talk = "TALK" |
|
Skill = "SKILL" |
|
|
|
|
|
class Assistant(Role): |
|
"""Assistant for solving common issues.""" |
|
|
|
name: str = "Lily" |
|
profile: str = "An assistant" |
|
goal: str = "Help to solve problem" |
|
constraints: str = "Talk in {language}" |
|
desc: str = "" |
|
memory: BrainMemory = Field(default_factory=BrainMemory) |
|
skills: Optional[SkillsDeclaration] = None |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
language = kwargs.get("language") or self.context.kwargs.language |
|
self.constraints = self.constraints.format(language=language) |
|
|
|
async def think(self) -> bool: |
|
"""Everything will be done part by part.""" |
|
last_talk = await self.refine_memory() |
|
if not last_talk: |
|
return False |
|
if not self.skills: |
|
skill_path = Path(self.context.kwargs.SKILL_PATH) if self.context.kwargs.SKILL_PATH else None |
|
self.skills = await SkillsDeclaration.load(skill_yaml_file_name=skill_path) |
|
|
|
prompt = "" |
|
skills = self.skills.get_skill_list(context=self.context) |
|
for desc, name in skills.items(): |
|
prompt += f"If the text explicitly want you to {desc}, return `[SKILL]: {name}` brief and clear. For instance: [SKILL]: {name}\n" |
|
prompt += 'Otherwise, return `[TALK]: {talk}` brief and clear. For instance: if {talk} is "xxxx" return [TALK]: xxxx\n\n' |
|
prompt += f"Now what specific action is explicitly mentioned in the text: {last_talk}\n" |
|
rsp = await self.llm.aask(prompt, ["You are an action classifier"], stream=False) |
|
logger.info(f"THINK: {prompt}\n, THINK RESULT: {rsp}\n") |
|
return await self._plan(rsp, last_talk=last_talk) |
|
|
|
async def act(self) -> Message: |
|
result = await self.rc.todo.run() |
|
if not result: |
|
return None |
|
if isinstance(result, str): |
|
msg = Message(content=result, role="assistant", cause_by=self.rc.todo) |
|
elif isinstance(result, Message): |
|
msg = result |
|
else: |
|
msg = Message(content=result.content, instruct_content=result.instruct_content, cause_by=type(self.rc.todo)) |
|
self.memory.add_answer(msg) |
|
return msg |
|
|
|
async def talk(self, text): |
|
self.memory.add_talk(Message(content=text)) |
|
|
|
async def _plan(self, rsp: str, **kwargs) -> bool: |
|
skill, text = BrainMemory.extract_info(input_string=rsp) |
|
handlers = { |
|
MessageType.Talk.value: self.talk_handler, |
|
MessageType.Skill.value: self.skill_handler, |
|
} |
|
handler = handlers.get(skill, self.talk_handler) |
|
return await handler(text, **kwargs) |
|
|
|
async def talk_handler(self, text, **kwargs) -> bool: |
|
history = self.memory.history_text |
|
text = kwargs.get("last_talk") or text |
|
self.set_todo( |
|
TalkAction(i_context=text, knowledge=self.memory.get_knowledge(), history_summary=history, llm=self.llm) |
|
) |
|
return True |
|
|
|
async def skill_handler(self, text, **kwargs) -> bool: |
|
last_talk = kwargs.get("last_talk") |
|
skill = self.skills.get_skill(text) |
|
if not skill: |
|
logger.info(f"skill not found: {text}") |
|
return await self.talk_handler(text=last_talk, **kwargs) |
|
action = ArgumentsParingAction(skill=skill, llm=self.llm, ask=last_talk) |
|
await action.run(**kwargs) |
|
if action.args is None: |
|
return await self.talk_handler(text=last_talk, **kwargs) |
|
self.set_todo(SkillAction(skill=skill, args=action.args, llm=self.llm, name=skill.name, desc=skill.description)) |
|
return True |
|
|
|
async def refine_memory(self) -> str: |
|
last_talk = self.memory.pop_last_talk() |
|
if last_talk is None: |
|
return None |
|
if not self.memory.is_history_available: |
|
return last_talk |
|
history_summary = await self.memory.summarize(max_words=800, keep_language=True, llm=self.llm) |
|
if last_talk and await self.memory.is_related(text1=last_talk, text2=history_summary, llm=self.llm): |
|
|
|
merged = await self.memory.rewrite(sentence=last_talk, context=history_summary, llm=self.llm) |
|
return f"{merged} {last_talk}" |
|
|
|
return last_talk |
|
|
|
def get_memory(self) -> str: |
|
return self.memory.model_dump_json() |
|
|
|
def load_memory(self, m): |
|
try: |
|
self.memory = BrainMemory(**m) |
|
except Exception as e: |
|
logger.exception(f"load error:{e}, data:{m}") |
|
|