XiangJinYu's picture
add metagpt
fe5c39d verified
"""
Filename: MetaGPT/examples/werewolf_game/evals/eval.py
Created Date: Oct 18, 2023
Updated Date: Oct 24, 2023
Author: [Aria](https://github.com/ariafyy)
Info: eval the Voting Accuracy Rate of non_werewolves and Vote Difficulity
"""
import glob
import os
import re
from pathlib import Path
import numpy as np
import pandas as pd
from tqdm import tqdm
from utils import Utils
from metagpt.const import DEFAULT_WORKSPACE_ROOT, METAGPT_ROOT
from metagpt.environment.werewolf.const import RoleType
class Vote:
"""Vote Evaluation"""
def __init__(self):
self.OUT_PATH = DEFAULT_WORKSPACE_ROOT / "outputs"
os.makedirs(self.OUT_PATH, exist_ok=True)
self.SUB_FOLDER_LIST = ["01-10", "11-20", "21-30"]
def _get_log_fileslist(self, IN_PATH) -> list[str]:
files_list = []
for SUB_FOLDER in self.SUB_FOLDER_LIST:
files_list.extend(glob.glob(str(IN_PATH / SUB_FOLDER / "*.txt")))
return files_list
def extract_votes_from_logs(self, files_list: list):
for in_logfile in tqdm(files_list):
SUB_FOLDER = (Path(in_logfile).parent).stem
out_txtfile = self.OUT_PATH / "# {0}_{1}.txt".format(SUB_FOLDER, Path(in_logfile).stem)
Utils().pick_vote_log(in_logfile, out_txtfile)
votefiles_list = Utils().get_file_list(self.OUT_PATH)
return votefiles_list
@staticmethod
def parse_vote_text2chunks(text: str):
"""
parse each game vote log into text chunks
one chunk example:
['Player1', 'Player2', 'Player3', 'Player5', 'Player6']. Say ONLY: I vote to eliminate ...
Player1(Witch): 49 | I vote to eliminate Player5
Player2(Villager): 49 | I vote to eliminate Player5
Player3(Villager): 49 | I vote to eliminate Player5
Player5(Werewolf): 49 | I vote to eliminate Player6
Player6(Seer): 49 | I vote to eliminate Player5
"""
pattern = re.compile(r"""\[([^\]]+)\]. Say ONLY: I vote to eliminate ...""")
chunks = {}
chunk_id = 0
last_end = 0
for match in pattern.finditer(text):
start = match.start()
chunk = text[last_end:start]
chunks[f"vote_{chunk_id}"] = chunk.strip()
last_end = match.end()
chunk_id += 1
final_chunk = text[last_end:].strip()
if final_chunk:
chunks[f"vote_{chunk_id}"] = final_chunk
return chunks
def _vote_rate_players(self, text: str):
"""
# calculate the rate of goodteam vote werewolves
:example:
input:
['Player1', 'Player2', 'Player3', 'Player5', 'Player6']. Say ONLY: I vote to eliminate ...
Player1(Witch): 49 | I vote to eliminate Player5
Player2(Villager): 49 | I vote to eliminate Player5
Player3(Villager): 49 | I vote to eliminate Player5
Player5(Werewolf): 49 | I vote to eliminate Player6
Player6(Seer): 49 | I vote to eliminate Player5
output:
werewolves: ['Player5']
non_werewolves: ['Player1', 'Player2', 'Player3', 'Player6']
as you can see :Player2(Villager) and Player3(Villager) vote to eliminate Player5(Werewolf)
:return goodteam vote rateability: 100.00%
"""
pattern = re.compile(r"(\w+)\(([^\)]+)\): \d+ \| I vote to eliminate (\w+)")
# find all werewolves
werewolves = []
for match in pattern.finditer(text):
if match.group(2) == RoleType.WEREWOLF.value:
werewolves.append(match.group(1))
# find all non_werewolves
non_werewolves = []
for match in pattern.finditer(text):
if match.group(2) != RoleType.WEREWOLF.value:
non_werewolves.append(match.group(1))
num_non_werewolves = len(non_werewolves)
# count players other than werewolves made the correct votes
correct_votes = 0
for match in pattern.finditer(text):
if match.group(2) != RoleType.WEREWOLF.value and match.group(3) in werewolves:
correct_votes += 1
# cal the rateability of non_werewolves
rate = correct_votes / num_non_werewolves
good_vote_rate = round(rate, 2)
return {"good_vote_rate": good_vote_rate, "werewolves": werewolves, "non_werewolves": non_werewolves}
def get_goodteam_vote_rate(self, text: str) -> float:
goodteam_vote_rate = self._vote_rate_players(text)["good_vote_rate"]
return goodteam_vote_rate
def get_werewolves(self, text: str) -> list:
werewolves_list = self._vote_rate_players(text)["werewolves"]
return werewolves_list
def get_non_werewolves(self, text: str) -> list:
non_werewolves_list = self._vote_rate_players(text)["non_werewolves"]
return non_werewolves_list
def get_votewolf_difficulty(self, werewolves: list, non_werewolves: list) -> str:
num_living_wolfs = len(werewolves)
num_living_players = len(werewolves) + len(non_werewolves)
votewolf_difficulty = "_{0} / {1}".format(num_living_wolfs, num_living_players)
return votewolf_difficulty
def get_result_df(self, out_txtfile: str) -> pd.DataFrame:
"""
folder: sub folders for evals
file: evaluation file, each file represents one game
votes: the number of votes, eg. vote_1 represents the first vote of this game,
good_vote_rate:the rateability of a good person voting against a werewolf,
correct_votes / the total number of players other than werewolves
total_votes:the total number of votes cast
"""
with open(out_txtfile, "r") as out_file:
text = out_file.read()
chunks = self.parse_vote_text2chunks(text)
res = []
for k, v in chunks.items():
if v != "":
chunks_list = list(chunks.keys())
total_votes = len(chunks_list) - 1
werewolves = self.get_werewolves(v)
non_werewolves = self.get_non_werewolves(v)
good_vote_rate = self.get_goodteam_vote_rate(v)
votewolf_difficulty = self.get_votewolf_difficulty(werewolves, non_werewolves)
folder = Utils().filename_to_foldername(out_txtfile)
result = {
"folder": folder,
"file": Path(out_txtfile).stem + ".txt",
"vote_round": k,
"good_vote_rate": good_vote_rate,
"total_votes": total_votes,
"votewolf_difficulty": votewolf_difficulty,
}
res.append(result)
df = pd.DataFrame(res)
return df
def calc_avg_rate(self, IN_PATH) -> pd.DataFrame:
"""
get avg_rate for each game
avg_rate : the good_rate/total number of votes in the game
vote1_rate: First Round Voting Accuracy Rate
"""
infiles_list = self._get_log_fileslist(IN_PATH)
votefiles_list = self.extract_votes_from_logs(infiles_list)
df_list = [self._load_df_from_file(file) for file in votefiles_list]
combined_df = pd.concat(df_list, ignore_index=True)
# calculate the average good_vote_rate for each file
mean_rates = self._calculate_mean_rates(combined_df)
combined_df["avg_rate"] = combined_df["file"].map(mean_rates)
# calculate vote1 rate
vote1_rates = self._calc_vote1_rates(combined_df)
combined_df["vote1_rate"] = combined_df["folder"].map(vote1_rates.set_index("folder")["good_vote_rate"])
combined_df.loc[combined_df["vote_round"] != "vote_1", "vote1_rate"] = np.nan
combined_df["vote1_rate"] = combined_df["vote1_rate"].apply(self._format_rates)
combined_df["good_vote_rate"] = combined_df["good_vote_rate"].apply(self._format_rates)
combined_df["avg_rate"] = combined_df["avg_rate"].apply(self._format_rates)
combined_df.sort_values(["file"], ascending=True, inplace=True)
return combined_df
def _calc_vote1_rates(self, df):
df_vote1 = df[df["vote_round"] == "vote_1"]
vote1_rates = df_vote1.groupby("folder")["good_vote_rate"].mean().reset_index()
return vote1_rates
def _load_df_from_file(self, file):
return self.get_result_df(file)
def _calculate_mean_rates(self, df):
return df.groupby("file")["good_vote_rate"].mean()
def _format_rates(self, s):
return Utils().float_to_percent(s)
def get_eval_csv(self, IN_PATH, EVAL_RESULT):
"""
IN_PATH : parent folder of ["01-10", "11-20", "21-30"]
EVAL_RESULT : output csv file path
"""
combined_df = self.calc_avg_rate(IN_PATH)
combined_df.to_csv(EVAL_RESULT, index=False)
if __name__ == "__main__":
IN_PATH = METAGPT_ROOT / "examples/werewolf_game/evals"
EVAL_RESULT = DEFAULT_WORKSPACE_ROOT / "outputs" / "goodteam_vote_rate.csv"
Vote().get_eval_csv(IN_PATH, EVAL_RESULT)