File size: 14,575 Bytes
0a59e16 e32209f 0a59e16 52c3dce 0a59e16 52c3dce 91e9775 52c3dce 91e9775 52c3dce 91e9775 621008a 1d7bcb9 bee2619 1d7bcb9 97f2120 621008a 1d7bcb9 621008a 1d7bcb9 91e9775 1d7bcb9 91e9775 1d7bcb9 91e9775 1d7bcb9 5189325 91e9775 57c258b 52c3dce 0a59e16 91e9775 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 52c3dce c01c8e0 0c752de c01c8e0 0c752de c01c8e0 0c752de c01c8e0 0c752de c01c8e0 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 1d7bcb9 91e9775 0c752de 1d7bcb9 0a59e16 0c752de 1d7bcb9 0a59e16 0c752de 85cc548 0c752de 85cc548 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 97f2120 91e9775 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 91e9775 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 91e9775 0a59e16 52c3dce 0a59e16 97f2120 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 85cc548 0a59e16 0c752de 0a59e16 0c752de 0a59e16 0c752de 0a59e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import asyncio
from pathlib import Path
from typing import Dict, List
import streamlit as st
import yaml
from loguru import logger as _logger
import shutil
import uuid
from metagpt.const import METAGPT_ROOT
from metagpt.ext.spo.components.optimizer import PromptOptimizer
from metagpt.ext.spo.utils.llm_client import SPO_LLM, RequestType
def get_user_workspace():
if "user_id" not in st.session_state:
st.session_state.user_id = str(uuid.uuid4())
workspace_dir = Path("workspace") / st.session_state.user_id
workspace_dir.mkdir(parents=True, exist_ok=True)
return workspace_dir
def cleanup_workspace(workspace_dir: Path) -> None:
try:
if workspace_dir.exists():
shutil.rmtree(workspace_dir)
_logger.info(f"Cleaned up workspace directory: {workspace_dir}")
except Exception as e:
_logger.error(f"Error cleaning up workspace: {e}")
def get_template_path(template_name: str, is_new_template: bool = False) -> str:
"""
Get template file path
:param template_name: Name of the template
:param is_new_template: Whether it's a new template created by user
:return: Path object for the template file
"""
if is_new_template:
# Create user-specific subdirectory in settings folder
if "user_id" not in st.session_state:
st.session_state.user_id = str(uuid.uuid4())
user_settings_path = st.session_state.user_id
return f"{user_settings_path}/{template_name}.yaml"
else:
# Use root settings path for existing templates
return f"{template_name}.yaml"
def get_all_templates() -> List[str]:
"""
Get list of all available templates (both default and user-specific)
:return: List of template names
"""
settings_path = Path("metagpt/ext/spo/settings")
# Get default templates
templates = [f.stem for f in settings_path.glob("*.yaml")]
# Get user-specific templates if user_id exists
if "user_id" in st.session_state:
user_path = settings_path / st.session_state.user_id
if user_path.exists():
user_templates = [f"{st.session_state.user_id}/{f.stem}" for f in user_path.glob("*.yaml")]
templates.extend(user_templates)
return sorted(list(set(templates)))
def load_yaml_template(template_path: Path) -> Dict:
if template_path.exists():
with open(template_path, "r", encoding="utf-8") as f:
return yaml.safe_load(f)
return {"prompt": "", "requirements": "", "count": None, "qa": [{"question": "", "answer": ""}]}
def save_yaml_template(template_path: Path, data: Dict, is_new: bool) -> None:
if is_new:
template_format = {
"prompt": str(data.get("prompt", "")),
"requirements": str(data.get("requirements", "")),
"count": data.get("count"),
"qa": [
{"question": str(qa.get("question", "")).strip(), "answer": str(qa.get("answer", "")).strip()}
for qa in data.get("qa", [])
],
}
template_path.parent.mkdir(parents=True, exist_ok=True)
with open(template_path, "w", encoding="utf-8") as f:
yaml.dump(template_format, f, allow_unicode=True, sort_keys=False, default_flow_style=False, indent=2)
else:
pass
def display_optimization_results(result_data):
for result in result_data:
round_num = result["round"]
success = result["succeed"]
prompt = result["prompt"]
with st.expander(f"轮次 {round_num} {':white_check_mark:' if success else ':x:'}"):
st.markdown("**提示词:**")
st.code(prompt, language="text")
st.markdown("<br>", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown(f"**状态:** {'成功 ✅ ' if success else '失败 ❌ '}")
with col2:
st.markdown(f"**令牌数:** {result['tokens']}")
st.markdown("**回答:**")
for idx, answer in enumerate(result["answers"]):
st.markdown(f"**问题 {idx + 1}:**")
st.text(answer["question"])
st.markdown("**答案:**")
st.text(answer["answer"])
st.markdown("---")
# 总结
success_count = sum(1 for r in result_data if r["succeed"])
total_rounds = len(result_data)
st.markdown("### 总结")
col1, col2 = st.columns(2)
with col1:
st.metric("总轮次", total_rounds)
with col2:
st.metric("成功轮次", success_count)
def main():
if "optimization_results" not in st.session_state:
st.session_state.optimization_results = []
workspace_dir = get_user_workspace()
st.markdown(
"""
<div style="background-color: #f0f2f6; padding: 20px; border-radius: 10px; margin-bottom: 25px">
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px">
<h1 style="margin: 0;">SPO | 自监督提示词优化 🤖</h1>
</div>
<div style="display: flex; gap: 20px; align-items: center">
<a href="https://arxiv.org/pdf/2502.06855" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/论文-PDF-red.svg" alt="论文">
</a>
<a href="https://github.com/geekan/MetaGPT/blob/main/examples/spo/README.md" target="_blank" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-仓库-blue.svg" alt="GitHub">
</a>
<span style="color: #666;">一个自监督提示词优化框架</span>
</div>
</div>
""",
unsafe_allow_html=True
)
# 侧边栏配置
with st.sidebar:
st.header("配置")
# 模板选择/创建
settings_path = Path("metagpt/ext/spo/settings")
existing_templates = [f.stem for f in settings_path.glob("*.yaml")]
template_mode = st.radio("模板模式", ["使用现有", "创建新模板"])
existing_templates = get_all_templates()
if template_mode == "使用现有":
template_name = st.selectbox("选择模板", existing_templates)
is_new_template = False
else:
template_name = st.text_input("新模板名称")
is_new_template = True
# LLM 设置
st.subheader("LLM 设置")
base_url = st.text_input("基础 URL", value="https://api.example.com")
api_key = st.text_input("API 密钥", type="password")
opt_model = st.selectbox(
"优化模型", ["gpt-4o-mini", "gpt-4o", "deepseek-chat", "claude-3-5-sonnet-20240620"], index=0
)
opt_temp = st.slider("优化温度", 0.0, 1.0, 0.7)
eval_model = st.selectbox(
"评估模型", ["gpt-4o-mini", "gpt-4o", "deepseek-chat", "claude-3-5-sonnet-20240620"], index=0
)
eval_temp = st.slider("评估温度", 0.0, 1.0, 0.3)
exec_model = st.selectbox(
"执行模型", ["gpt-4o-mini", "gpt-4o", "deepseek-chat", "claude-3-5-sonnet-20240620"], index=0
)
exec_temp = st.slider("执行温度", 0.0, 1.0, 0.0)
# 优化器设置
st.subheader("优化器设置")
initial_round = st.number_input("初始轮次", 1, 100, 1)
max_rounds = st.number_input("最大轮次", 1, 100, 10)
# 主要内容区域
st.header("模板配置")
if template_name:
template_real_name = get_template_path(template_name, is_new_template)
settings_path = Path("metagpt/ext/spo/settings")
template_path = settings_path / template_real_name
template_data = load_yaml_template(template_path)
if "current_template" not in st.session_state or st.session_state.current_template != template_name:
st.session_state.current_template = template_name
st.session_state.qas = template_data.get("qa", [])
# 编辑模板部分
prompt = st.text_area("提示词", template_data.get("prompt", ""), height=100)
requirements = st.text_area("要求", template_data.get("requirements", ""), height=100)
# 问答部分
st.subheader("问答示例")
# 添加新问答按钮
if st.button("添加新问答"):
st.session_state.qas.append({"question": "", "answer": ""})
# 编辑问答
new_qas = []
for i in range(len(st.session_state.qas)):
st.markdown(f"**问答 #{i + 1}**")
col1, col2, col3 = st.columns([45, 45, 10])
with col1:
question = st.text_area(
f"问题 {i + 1}", st.session_state.qas[i].get("question", ""), key=f"q_{i}", height=100
)
with col2:
answer = st.text_area(
f"答案 {i + 1}", st.session_state.qas[i].get("answer", ""), key=f"a_{i}", height=100
)
with col3:
if st.button("🗑️", key=f"delete_{i}"):
st.session_state.qas.pop(i)
st.rerun()
new_qas.append({"question": question, "answer": answer})
# 保存模板按钮
if st.button("保存模板"):
new_template_data = {"prompt": prompt, "requirements": requirements, "count": None, "qa": new_qas}
save_yaml_template(template_path, new_template_data, is_new_template)
st.session_state.qas = new_qas
st.success(f"模板已保存到 {template_path}")
st.subheader("当前模板预览")
preview_data = {"qa": new_qas, "requirements": requirements, "prompt": prompt}
st.code(yaml.dump(preview_data, allow_unicode=True), language="yaml")
st.subheader("优化日志")
log_container = st.empty()
class StreamlitSink:
def write(self, message):
current_logs = st.session_state.get("logs", [])
current_logs.append(message.strip())
st.session_state.logs = current_logs
log_container.code("\n".join(current_logs), language="plaintext")
streamlit_sink = StreamlitSink()
_logger.remove()
def prompt_optimizer_filter(record):
return "optimizer" in record["name"].lower()
_logger.add(
streamlit_sink.write,
format="{time:YYYY-MM-DD HH:mm:ss.SSS} | {level: <8} | {name}:{function}:{line} - {message}",
filter=prompt_optimizer_filter,
)
_logger.add(METAGPT_ROOT / "logs/{time:YYYYMMDD}.txt", level="DEBUG")
# 开始优化按钮
if st.button("开始优化"):
try:
# Initialize LLM
SPO_LLM.initialize(
optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url,
"api_key": api_key},
evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url,
"api_key": api_key},
execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url,
"api_key": api_key},
)
# Create optimizer instance
optimizer = PromptOptimizer(
optimized_path=str(workspace_dir),
initial_round=initial_round,
max_rounds=max_rounds,
template=f"{template_real_name}",
name=template_name,
)
# Run optimization with progress bar
with st.spinner("Optimizing prompts..."):
optimizer.optimize()
st.success("优化完成!")
st.header("优化结果")
prompt_path = optimizer.root_path / "prompts"
result_data = optimizer.data_utils.load_results(prompt_path)
st.session_state.optimization_results = result_data
except Exception as e:
st.error(f"发生错误:{str(e)}")
_logger.error(f"优化过程中出错:{str(e)}")
if st.session_state.optimization_results:
st.header("优化结果")
display_optimization_results(st.session_state.optimization_results)
st.markdown("---")
st.subheader("测试优化后的提示词")
col1, col2 = st.columns(2)
with col1:
test_prompt = st.text_area("优化后的提示词", value="", height=200, key="test_prompt")
with col2:
test_question = st.text_area("你的问题", value="", height=200, key="test_question")
if st.button("测试提示词"):
if test_prompt and test_question:
try:
with st.spinner("正在生成回答..."):
SPO_LLM.initialize(
optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url,
"api_key": api_key},
evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url,
"api_key": api_key},
execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url,
"api_key": api_key},
)
llm = SPO_LLM.get_instance()
messages = [{"role": "user", "content": f"{test_prompt}\n\n{test_question}"}]
async def get_response():
return await llm.responser(request_type=RequestType.EXECUTE, messages=messages)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
response = loop.run_until_complete(get_response())
finally:
loop.close()
st.subheader("回答:")
st.markdown(response)
except Exception as e:
st.error(f"生成回答时出错:{str(e)}")
else:
st.warning("请输入提示词和问题。")
if __name__ == "__main__":
main()
|