File size: 14,575 Bytes
0a59e16
 
e32209f
0a59e16
 
 
 
52c3dce
 
0a59e16
 
 
 
 
 
52c3dce
 
 
91e9775
52c3dce
 
 
 
91e9775
52c3dce
 
 
 
 
 
 
 
91e9775
621008a
1d7bcb9
 
 
 
 
 
bee2619
1d7bcb9
 
 
 
97f2120
621008a
1d7bcb9
 
621008a
1d7bcb9
91e9775
1d7bcb9
 
 
 
 
 
91e9775
1d7bcb9
 
91e9775
1d7bcb9
 
 
 
5189325
 
91e9775
57c258b
52c3dce
 
0a59e16
 
 
 
 
 
 
91e9775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a59e16
 
 
 
 
 
 
0c752de
 
0a59e16
 
 
 
 
0c752de
0a59e16
0c752de
0a59e16
0c752de
0a59e16
0c752de
0a59e16
0c752de
0a59e16
 
 
0c752de
0a59e16
 
 
0c752de
0a59e16
 
0c752de
0a59e16
0c752de
0a59e16
 
 
 
 
 
52c3dce
 
c01c8e0
 
 
 
0c752de
c01c8e0
 
 
0c752de
c01c8e0
 
0c752de
c01c8e0
0c752de
c01c8e0
 
 
 
 
0a59e16
0c752de
0a59e16
0c752de
0a59e16
0c752de
0a59e16
 
0c752de
0a59e16
1d7bcb9
91e9775
0c752de
 
1d7bcb9
0a59e16
0c752de
1d7bcb9
0a59e16
0c752de
 
85cc548
0c752de
 
85cc548
0a59e16
0c752de
0a59e16
0c752de
0a59e16
 
0c752de
0a59e16
0c752de
0a59e16
 
0c752de
0a59e16
0c752de
0a59e16
0c752de
 
 
 
0a59e16
0c752de
 
0a59e16
 
97f2120
 
 
 
91e9775
0a59e16
 
 
 
 
 
0c752de
 
 
0a59e16
0c752de
 
0a59e16
0c752de
 
0a59e16
 
0c752de
0a59e16
 
0c752de
0a59e16
 
 
 
0c752de
0a59e16
 
 
0c752de
0a59e16
 
 
 
 
 
 
 
0c752de
 
0a59e16
 
91e9775
0a59e16
 
0c752de
0a59e16
0c752de
0a59e16
 
 
0c752de
0a59e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c752de
 
0a59e16
 
 
91e9775
 
 
 
 
 
0a59e16
 
 
 
52c3dce
0a59e16
 
97f2120
0a59e16
 
 
 
 
 
 
0c752de
 
0a59e16
 
 
 
 
 
0c752de
 
0a59e16
 
0c752de
0a59e16
 
 
0c752de
0a59e16
 
 
0c752de
0a59e16
 
0c752de
0a59e16
0c752de
0a59e16
 
0c752de
0a59e16
85cc548
 
 
 
 
 
0a59e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c752de
0a59e16
 
 
0c752de
0a59e16
0c752de
0a59e16
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import asyncio
from pathlib import Path
from typing import Dict, List

import streamlit as st
import yaml
from loguru import logger as _logger
import shutil
import uuid

from metagpt.const import METAGPT_ROOT
from metagpt.ext.spo.components.optimizer import PromptOptimizer
from metagpt.ext.spo.utils.llm_client import SPO_LLM, RequestType


def get_user_workspace():
    if "user_id" not in st.session_state:
        st.session_state.user_id = str(uuid.uuid4())

    workspace_dir = Path("workspace") / st.session_state.user_id
    workspace_dir.mkdir(parents=True, exist_ok=True)
    return workspace_dir


def cleanup_workspace(workspace_dir: Path) -> None:
    try:
        if workspace_dir.exists():
            shutil.rmtree(workspace_dir)
            _logger.info(f"Cleaned up workspace directory: {workspace_dir}")
    except Exception as e:
        _logger.error(f"Error cleaning up workspace: {e}")


def get_template_path(template_name: str, is_new_template: bool = False) -> str:
    """
    Get template file path
    :param template_name: Name of the template
    :param is_new_template: Whether it's a new template created by user
    :return: Path object for the template file
    """

    if is_new_template:
        # Create user-specific subdirectory in settings folder
        if "user_id" not in st.session_state:
            st.session_state.user_id = str(uuid.uuid4())
        user_settings_path = st.session_state.user_id
        return f"{user_settings_path}/{template_name}.yaml"
    else:
        # Use root settings path for existing templates
        return f"{template_name}.yaml"


def get_all_templates() -> List[str]:
    """
    Get list of all available templates (both default and user-specific)
    :return: List of template names
    """
    settings_path = Path("metagpt/ext/spo/settings")

    # Get default templates
    templates = [f.stem for f in settings_path.glob("*.yaml")]

    # Get user-specific templates if user_id exists
    if "user_id" in st.session_state:
        user_path = settings_path / st.session_state.user_id
        if user_path.exists():
            user_templates = [f"{st.session_state.user_id}/{f.stem}" for f in user_path.glob("*.yaml")]
            templates.extend(user_templates)

    return sorted(list(set(templates)))


def load_yaml_template(template_path: Path) -> Dict:
    if template_path.exists():
        with open(template_path, "r", encoding="utf-8") as f:
            return yaml.safe_load(f)
    return {"prompt": "", "requirements": "", "count": None, "qa": [{"question": "", "answer": ""}]}


def save_yaml_template(template_path: Path, data: Dict, is_new: bool) -> None:
    
    if is_new:
        template_format = {
            "prompt": str(data.get("prompt", "")),
            "requirements": str(data.get("requirements", "")),
            "count": data.get("count"),
            "qa": [
                {"question": str(qa.get("question", "")).strip(), "answer": str(qa.get("answer", "")).strip()}
                for qa in data.get("qa", [])
            ],
        }
    
        template_path.parent.mkdir(parents=True, exist_ok=True)
    
        with open(template_path, "w", encoding="utf-8") as f:
            yaml.dump(template_format, f, allow_unicode=True, sort_keys=False, default_flow_style=False, indent=2)
    else:
        pass

def display_optimization_results(result_data):
    for result in result_data:
        round_num = result["round"]
        success = result["succeed"]
        prompt = result["prompt"]

        with st.expander(f"轮次 {round_num} {':white_check_mark:' if success else ':x:'}"):
            st.markdown("**提示词:**")
            st.code(prompt, language="text")
            st.markdown("<br>", unsafe_allow_html=True)

            col1, col2 = st.columns(2)
            with col1:
                st.markdown(f"**状态:** {'成功 ✅ ' if success else '失败 ❌ '}")
            with col2:
                st.markdown(f"**令牌数:** {result['tokens']}")

            st.markdown("**回答:**")
            for idx, answer in enumerate(result["answers"]):
                st.markdown(f"**问题 {idx + 1}:**")
                st.text(answer["question"])
                st.markdown("**答案:**")
                st.text(answer["answer"])
                st.markdown("---")

    # 总结
    success_count = sum(1 for r in result_data if r["succeed"])
    total_rounds = len(result_data)

    st.markdown("### 总结")
    col1, col2 = st.columns(2)
    with col1:
        st.metric("总轮次", total_rounds)
    with col2:
        st.metric("成功轮次", success_count)


def main():
    if "optimization_results" not in st.session_state:
        st.session_state.optimization_results = []

    workspace_dir = get_user_workspace()

    st.markdown(
    """
    <div style="background-color: #f0f2f6; padding: 20px; border-radius: 10px; margin-bottom: 25px">
        <div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px">
            <h1 style="margin: 0;">SPO | 自监督提示词优化 🤖</h1>
        </div>
        <div style="display: flex; gap: 20px; align-items: center">
            <a href="https://arxiv.org/pdf/2502.06855" target="_blank" style="text-decoration: none;">
                <img src="https://img.shields.io/badge/论文-PDF-red.svg" alt="论文">
            </a>
            <a href="https://github.com/geekan/MetaGPT/blob/main/examples/spo/README.md" target="_blank" style="text-decoration: none;">
                <img src="https://img.shields.io/badge/GitHub-仓库-blue.svg" alt="GitHub">
            </a>
            <span style="color: #666;">一个自监督提示词优化框架</span>
        </div>
    </div>
    """,
    unsafe_allow_html=True
    )

    # 侧边栏配置
    with st.sidebar:
        st.header("配置")

        # 模板选择/创建
        settings_path = Path("metagpt/ext/spo/settings")
        existing_templates = [f.stem for f in settings_path.glob("*.yaml")]
        template_mode = st.radio("模板模式", ["使用现有", "创建新模板"])

        existing_templates = get_all_templates()

        if template_mode == "使用现有":
            template_name = st.selectbox("选择模板", existing_templates)
            is_new_template = False
        else:
            template_name = st.text_input("新模板名称")
            is_new_template = True

        # LLM 设置
        st.subheader("LLM 设置")

        base_url = st.text_input("基础 URL", value="https://api.example.com")
        api_key = st.text_input("API 密钥", type="password")

        opt_model = st.selectbox(
            "优化模型", ["gpt-4o-mini", "gpt-4o", "deepseek-chat", "claude-3-5-sonnet-20240620"], index=0
        )
        opt_temp = st.slider("优化温度", 0.0, 1.0, 0.7)

        eval_model = st.selectbox(
            "评估模型", ["gpt-4o-mini", "gpt-4o", "deepseek-chat", "claude-3-5-sonnet-20240620"], index=0
        )
        eval_temp = st.slider("评估温度", 0.0, 1.0, 0.3)

        exec_model = st.selectbox(
            "执行模型", ["gpt-4o-mini", "gpt-4o", "deepseek-chat", "claude-3-5-sonnet-20240620"], index=0
        )
        exec_temp = st.slider("执行温度", 0.0, 1.0, 0.0)

        # 优化器设置
        st.subheader("优化器设置")
        initial_round = st.number_input("初始轮次", 1, 100, 1)
        max_rounds = st.number_input("最大轮次", 1, 100, 10)

    # 主要内容区域
    st.header("模板配置")

    if template_name:
        template_real_name = get_template_path(template_name, is_new_template)
        settings_path = Path("metagpt/ext/spo/settings")

        template_path = settings_path / template_real_name

        template_data = load_yaml_template(template_path)

        if "current_template" not in st.session_state or st.session_state.current_template != template_name:
            st.session_state.current_template = template_name
            st.session_state.qas = template_data.get("qa", [])

        # 编辑模板部分
        prompt = st.text_area("提示词", template_data.get("prompt", ""), height=100)
        requirements = st.text_area("要求", template_data.get("requirements", ""), height=100)

        # 问答部分
        st.subheader("问答示例")

        # 添加新问答按钮
        if st.button("添加新问答"):
            st.session_state.qas.append({"question": "", "answer": ""})

        # 编辑问答
        new_qas = []
        for i in range(len(st.session_state.qas)):
            st.markdown(f"**问答 #{i + 1}**")
            col1, col2, col3 = st.columns([45, 45, 10])

            with col1:
                question = st.text_area(
                    f"问题 {i + 1}", st.session_state.qas[i].get("question", ""), key=f"q_{i}", height=100
                )
            with col2:
                answer = st.text_area(
                    f"答案 {i + 1}", st.session_state.qas[i].get("answer", ""), key=f"a_{i}", height=100
                )
            with col3:
                if st.button("🗑️", key=f"delete_{i}"):
                    st.session_state.qas.pop(i)
                    st.rerun()

            new_qas.append({"question": question, "answer": answer})

        # 保存模板按钮
        if st.button("保存模板"):
            new_template_data = {"prompt": prompt, "requirements": requirements, "count": None, "qa": new_qas}

            save_yaml_template(template_path, new_template_data, is_new_template)

            st.session_state.qas = new_qas
            st.success(f"模板已保存到 {template_path}")

        st.subheader("当前模板预览")
        preview_data = {"qa": new_qas, "requirements": requirements, "prompt": prompt}
        st.code(yaml.dump(preview_data, allow_unicode=True), language="yaml")

        st.subheader("优化日志")
        log_container = st.empty()

        class StreamlitSink:
            def write(self, message):
                current_logs = st.session_state.get("logs", [])
                current_logs.append(message.strip())
                st.session_state.logs = current_logs

                log_container.code("\n".join(current_logs), language="plaintext")

        streamlit_sink = StreamlitSink()
        _logger.remove()

        def prompt_optimizer_filter(record):
            return "optimizer" in record["name"].lower()

        _logger.add(
            streamlit_sink.write,
            format="{time:YYYY-MM-DD HH:mm:ss.SSS} | {level: <8} | {name}:{function}:{line} - {message}",
            filter=prompt_optimizer_filter,
        )
        _logger.add(METAGPT_ROOT / "logs/{time:YYYYMMDD}.txt", level="DEBUG")

        # 开始优化按钮
        if st.button("开始优化"):
            try:
                # Initialize LLM
                SPO_LLM.initialize(
                    optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url,
                                     "api_key": api_key},
                    evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url,
                                     "api_key": api_key},
                    execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url,
                                    "api_key": api_key},
                )

                # Create optimizer instance
                optimizer = PromptOptimizer(
                    optimized_path=str(workspace_dir),
                    initial_round=initial_round,
                    max_rounds=max_rounds,
                    template=f"{template_real_name}",
                    name=template_name,
                )

                # Run optimization with progress bar
                with st.spinner("Optimizing prompts..."):
                    optimizer.optimize()

                st.success("优化完成!")
                st.header("优化结果")
                prompt_path = optimizer.root_path / "prompts"
                result_data = optimizer.data_utils.load_results(prompt_path)

                st.session_state.optimization_results = result_data

            except Exception as e:
                st.error(f"发生错误:{str(e)}")
                _logger.error(f"优化过程中出错:{str(e)}")

        if st.session_state.optimization_results:
            st.header("优化结果")
            display_optimization_results(st.session_state.optimization_results)

        st.markdown("---")
        st.subheader("测试优化后的提示词")
        col1, col2 = st.columns(2)

        with col1:
            test_prompt = st.text_area("优化后的提示词", value="", height=200, key="test_prompt")

        with col2:
            test_question = st.text_area("你的问题", value="", height=200, key="test_question")

        if st.button("测试提示词"):
            if test_prompt and test_question:
                try:
                    with st.spinner("正在生成回答..."):
                        SPO_LLM.initialize(
                            optimize_kwargs={"model": opt_model, "temperature": opt_temp, "base_url": base_url,
                                             "api_key": api_key},
                            evaluate_kwargs={"model": eval_model, "temperature": eval_temp, "base_url": base_url,
                                             "api_key": api_key},
                            execute_kwargs={"model": exec_model, "temperature": exec_temp, "base_url": base_url,
                                            "api_key": api_key},
                        )

                        llm = SPO_LLM.get_instance()
                        messages = [{"role": "user", "content": f"{test_prompt}\n\n{test_question}"}]

                        async def get_response():
                            return await llm.responser(request_type=RequestType.EXECUTE, messages=messages)

                        loop = asyncio.new_event_loop()
                        asyncio.set_event_loop(loop)
                        try:
                            response = loop.run_until_complete(get_response())
                        finally:
                            loop.close()

                        st.subheader("回答:")
                        st.markdown(response)

                except Exception as e:
                    st.error(f"生成回答时出错:{str(e)}")
            else:
                st.warning("请输入提示词和问题。")


if __name__ == "__main__":
    main()