Spaces:
Sleeping
Sleeping
File size: 10,208 Bytes
417f39c cb18316 80d7919 64096c9 7004eb5 64096c9 faf189f 417f39c bac1189 c418edf 417f39c 7004eb5 417f39c 7004eb5 417f39c 7004eb5 bac1189 7004eb5 bac1189 7004eb5 bac1189 7004eb5 edd993d 7004eb5 417f39c bac1189 417f39c c418edf 417f39c bac1189 417f39c bac1189 edd993d c418edf 80d7919 c418edf 64096c9 7004eb5 9ddbb93 bac1189 417f39c 64096c9 7004eb5 64096c9 7004eb5 64096c9 c418edf 553023f 417f39c fff21b1 417f39c 64096c9 e315877 cb18316 7004eb5 64096c9 faf189f 64096c9 417f39c cb18316 faf189f 64096c9 cb18316 faf189f 417f39c 64096c9 1b5f36c faf189f 1b5f36c faf189f 1b5f36c c418edf 64096c9 cb18316 417f39c 80d7919 64096c9 cb18316 80d7919 c418edf 64096c9 faf189f 64096c9 c418edf 64096c9 cb18316 64096c9 80d7919 c418edf 80d7919 64096c9 c418edf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import datasets
import evaluate
import nltk
import numpy as np
import spacy
import torch
from alignscore import AlignScore
from transformers import AutoTokenizer
_CITATION = """\
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
\
@INPROCEEDINGS{Papineni02bleu:a,
author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},
title = {BLEU: a Method for Automatic Evaluation of Machine Translation},
booktitle = {},
year = {2002},
pages = {311--318}
}
@inproceedings{lin-och-2004-orange,
title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",
author = "Lin, Chin-Yew and
Och, Franz Josef",
booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",
month = "aug 23{--}aug 27",
year = "2004",
address = "Geneva, Switzerland",
publisher = "COLING",
url = "https://www.aclweb.org/anthology/C04-1072",
pages = "501--507",
\
@inproceedings{bert-score,
title={BERTScore: Evaluating Text Generation with BERT},
author={Tianyi Zhang* and Varsha Kishore* and Felix Wu* and Kilian Q. Weinberger and Yoav Artzi},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=SkeHuCVFDr}
\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
"""
_DESCRIPTION = """\
This evaluator computes multiple metrics to assess the quality of generated text. These metrics are the following:
- **ROUGE**: a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge
- **BLEU**: evaluates the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Neither intelligibility nor grammatical correctness are not taken into account.
- **Exact Match**: rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
- **BERTScore**: leverages the pre-trained contextual embeddings from BERT and matches words in candidate and reference sentences by cosine similarity. It has been shown to correlate with human judgment on sentence-level and system-level evaluation. Moreover, BERTScore computes precision, recall, and F1 measure, which can be useful for evaluating different language generation tasks. See the project's README at https://github.com/Tiiiger/bert_score#readme for more information.
- **AlignScore**: evaluates whether all the information in a piece of text *b* is contained in another piece of text *a* and *b* does not contradict *a*, by leveraging an information alignment function learnt through RoBERTa models. See https://github.com/yuh-zha/AlignScore for more information.
- **ChrF and ChrF++**: are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu.
"""
_KWARGS_DESCRIPTION = """
Calculates average rouge and bleu scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
ROUGE:{
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
},
BLEU:{
'bleu': bleu score,
'precisions': geometric mean of n-gram precisions,
'brevity_penalty': brevity penalty,
'length_ratio': ratio of lengths,
'translation_length': translation_length,
'reference_length': reference_length
},
EXACT_MATCH:{
"exact_match": exact_match rate. Possible values are between 0.0 and 1.0, inclusive.
},
BERT_SCORE:{
"precision": Precision.
"recall": Recall.
"f1": F1 score.
"hashcode": Hashcode of the library.
},
AlignScore:{
"score": mean align-scores using roberta-large as scorer
},
CHRF:{
'score' (float): The chrF (chrF++) score,
'char_order' (int): The character n-gram order,
'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,
'beta' (int): Determine the importance of recall w.r.t precision
}
"""
ALIGNSCORE_ARGS = {
"model": "roberta-large",
"batch_size": 32,
"ckpt_path": "https://huggingface.co./yzha/AlignScore/resolve/main/AlignScore-large.ckpt",
"evaluation_mode": "nli_sp",
}
class GenerationEvaluator(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Value("string"),
"references": datasets.Value("string"),
}
),
codebase_urls=[
"https://github.com/google-research/google-research/tree/master/rouge"
],
reference_urls=[
"https://en.wikipedia.org/wiki/ROUGE_(metric)",
"https://github.com/google-research/google-research/tree/master/rouge",
],
)
def _download_and_prepare(self, dl_manager):
# Download Spacy en_core_web_sm model for AlignScore
try:
spacy.load("en_core_web_sm")
except OSError:
spacy.cli.download("en_core_web_sm")
# Download punkt for AlignScore
nltk.download("punkt_tab")
# Download AlignScore model and move to GPU if possible
model_path = dl_manager.download(ALIGNSCORE_ARGS["ckpt_path"])
ALIGNSCORE_ARGS["ckpt_path"] = model_path
ALIGNSCORE_ARGS["device"] = "cuda:0" if torch.cuda.is_available() else "cpu"
self.align_scorer = AlignScore(**ALIGNSCORE_ARGS)
# Prepare scorers
self.rouge_scorer = evaluate.load("rouge")
self.bleu_scorer = evaluate.load("bleu")
self.exact_match_scorer = evaluate.load("exact_match")
self.bert_scorer = evaluate.load("bertscore")
self.chrf_scorer = evaluate.load("chrf")
def _compute(self, predictions, references, **eval_kwargs):
tokenizer_name = eval_kwargs.pop("tokenizer_name", None)
tokenizer = None
if tokenizer_name is not None:
tks = AutoTokenizer.from_pretrained(tokenizer_name)
tokenizer = tks.tokenize
# Compute ROUGE
rouge_results = self.rouge_scorer.compute(
predictions=predictions,
references=references,
tokenizer=tokenizer,
**eval_kwargs
)
# Compute BLEU
if tokenizer is None:
bleu_results = self.bleu_scorer.compute(
predictions=predictions, references=references, **eval_kwargs
)
else:
bleu_results = self.bleu_scorer.compute(
predictions=predictions,
references=references,
tokenizer=tokenizer,
**eval_kwargs
)
# Compute Exact Match
exact_match_results = self.exact_match_scorer.compute(
predictions=predictions, references=references
)
# Compute BERTScore
bert_score_results = self.bert_scorer.compute(
predictions=predictions, references=references, lang="en"
)
mean_precision = np.mean(bert_score_results["precision"])
mean_recall = np.mean(bert_score_results["recall"])
mean_f1 = np.mean(bert_score_results["f1"])
bert_score_results["precision"] = round(mean_precision, 4)
bert_score_results["recall"] = round(mean_recall, 4)
bert_score_results["f1"] = round(mean_f1, 4)
# Compute AlignScore
align_score = round(
np.mean(self.align_scorer.score(contexts=references, claims=predictions)),
4,
)
# Compute CHRF
chrf_results = self.chrf_scorer.compute(
predictions=predictions, references=references
)
return {
"ROUGE": rouge_results,
"BLEU": bleu_results,
"EXACT_MATCH": exact_match_results,
"BERT_SCORE": bert_score_results,
"CHRF": chrf_results,
"ALIGN_SCORE": align_score,
}
|