Spaces:
Sleeping
Sleeping
José Ángel González
commited on
Commit
·
509822c
1
Parent(s):
671ff9d
first commit
Browse files- app.py +1 -2
- clustering_evaluator.py +71 -71
- requirements.txt +4 -1
- tests.py +0 -17
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import evaluate
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
4 |
-
|
5 |
module = evaluate.load("symanto/clustering_evaluator")
|
6 |
-
launch_gradio_widget(module)
|
|
|
1 |
import evaluate
|
2 |
from evaluate.utils import launch_gradio_widget
|
3 |
|
|
|
4 |
module = evaluate.load("symanto/clustering_evaluator")
|
5 |
+
launch_gradio_widget(module)
|
clustering_evaluator.py
CHANGED
@@ -1,95 +1,95 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""TODO: Add a description here."""
|
15 |
-
|
16 |
-
import evaluate
|
17 |
import datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
-
|
30 |
_DESCRIPTION = """\
|
31 |
-
This
|
32 |
"""
|
33 |
|
34 |
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
|
38 |
Args:
|
39 |
-
|
40 |
-
|
41 |
-
references: list of reference for each prediction. Each
|
42 |
-
reference should be a string with tokens separated by spaces.
|
43 |
Returns:
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
Examples should be written in doctest format, and should illustrate how
|
48 |
-
to use the function.
|
49 |
-
|
50 |
-
>>> my_new_module = evaluate.load("my_new_module")
|
51 |
-
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
|
52 |
-
>>> print(results)
|
53 |
-
{'accuracy': 1.0}
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
-
|
60 |
-
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
-
class Clusteringevaluator(evaluate.Metric):
|
62 |
-
"""TODO: Short description of my evaluation module."""
|
63 |
|
|
|
|
|
|
|
|
|
64 |
def _info(self):
|
65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
66 |
return evaluate.MetricInfo(
|
67 |
-
# This is the description that will appear on the modules page.
|
68 |
module_type="metric",
|
69 |
description=_DESCRIPTION,
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
homepage="http://module.homepage",
|
79 |
-
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
)
|
83 |
|
84 |
-
def
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import datasets
|
2 |
+
import evaluate
|
3 |
+
from sklearn.metrics import (
|
4 |
+
adjusted_mutual_info_score,
|
5 |
+
adjusted_rand_score,
|
6 |
+
calinski_harabasz_score,
|
7 |
+
completeness_score,
|
8 |
+
davies_bouldin_score,
|
9 |
+
fowlkes_mallows_score,
|
10 |
+
homogeneity_score,
|
11 |
+
silhouette_score,
|
12 |
+
)
|
13 |
+
from sklearn.metrics.cluster import contingency_matrix, pair_confusion_matrix
|
14 |
|
15 |
+
_CITATION = """
|
16 |
+
@article{scikit-learn,
|
17 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
18 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
19 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
20 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
21 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
22 |
+
journal={Journal of Machine Learning Research},
|
23 |
+
volume={12},
|
24 |
+
pages={2825--2830},
|
25 |
+
year={2011}
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
+
|
30 |
_DESCRIPTION = """\
|
31 |
+
This evaluator computes multiple clustering metrics to assess the quality of a clustering.
|
32 |
"""
|
33 |
|
34 |
|
|
|
35 |
_KWARGS_DESCRIPTION = """
|
36 |
+
Computes the quality of clustering results.
|
37 |
Args:
|
38 |
+
samples' vector representations
|
39 |
+
y: computed cluster labels
|
|
|
|
|
40 |
Returns:
|
41 |
+
silhouete_score (float): cohesiveness and separation between clusters
|
42 |
+
davies_bouldin_score (float): average similarity measure of each cluster with its most similar cluster
|
43 |
+
calinski_harabasz_score (float): ratio of the sum of between-cluster dispersion and of within-cluster dispersion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
"""
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
@evaluate.utils.file_utils.add_start_docstrings(
|
48 |
+
_DESCRIPTION, _KWARGS_DESCRIPTION
|
49 |
+
)
|
50 |
+
class ClusteringEvaluator(evaluate.Metric):
|
51 |
def _info(self):
|
|
|
52 |
return evaluate.MetricInfo(
|
|
|
53 |
module_type="metric",
|
54 |
description=_DESCRIPTION,
|
55 |
citation=_CITATION,
|
56 |
inputs_description=_KWARGS_DESCRIPTION,
|
57 |
+
features=datasets.Features(
|
58 |
+
{
|
59 |
+
"samples": datasets.Sequence(datasets.Value("float32")),
|
60 |
+
"predictions": datasets.Value("int64"),
|
61 |
+
}
|
62 |
+
),
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
|
65 |
+
def _compute(self, samples, predictions, truth_labels=None):
|
66 |
+
unsupervised_metrics = [
|
67 |
+
silhouette_score,
|
68 |
+
davies_bouldin_score,
|
69 |
+
calinski_harabasz_score,
|
70 |
+
]
|
71 |
+
supervised_metrics = [
|
72 |
+
adjusted_rand_score,
|
73 |
+
adjusted_mutual_info_score,
|
74 |
+
homogeneity_score,
|
75 |
+
completeness_score,
|
76 |
+
fowlkes_mallows_score,
|
77 |
+
contingency_matrix,
|
78 |
+
pair_confusion_matrix,
|
79 |
+
]
|
80 |
+
results = {}
|
81 |
+
|
82 |
+
# Compute unsupervised metrics always
|
83 |
+
for fn in unsupervised_metrics:
|
84 |
+
results[fn.__name__] = float(fn(samples, predictions))
|
85 |
|
86 |
+
# Compute supervised metrics if reference labels are passed
|
87 |
+
if truth_labels is not None:
|
88 |
+
for fn in supervised_metrics:
|
89 |
+
score = fn(truth_labels, predictions)
|
90 |
+
try:
|
91 |
+
score = float(score)
|
92 |
+
except (AttributeError, TypeError):
|
93 |
+
pass
|
94 |
+
results[fn.__name__] = score
|
95 |
+
return results
|
requirements.txt
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
1 |
+
evaluate
|
2 |
+
datasets
|
3 |
+
scikit-learn
|
4 |
+
gradio
|
tests.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
test_cases = [
|
2 |
-
{
|
3 |
-
"predictions": [0, 0],
|
4 |
-
"references": [1, 1],
|
5 |
-
"result": {"metric_score": 0}
|
6 |
-
},
|
7 |
-
{
|
8 |
-
"predictions": [1, 1],
|
9 |
-
"references": [1, 1],
|
10 |
-
"result": {"metric_score": 1}
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"predictions": [1, 0],
|
14 |
-
"references": [1, 1],
|
15 |
-
"result": {"metric_score": 0.5}
|
16 |
-
}
|
17 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|